
Martha R Stampfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4216045/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Early growth response 2 (EGR2) is a novel regulator of the senescence programme. Aging Cell, 2021, 20, e13318.	6.7	16
2	Breast-Specific Molecular Clocks Comprised of <i>ELF5</i> Expression and Promoter Methylation Identify Individuals Susceptible to Cancer Initiation. Cancer Prevention Research, 2021, 14, 779-794.	1.5	11
3	Evidence for accelerated aging in mammary epithelia of women carrying germline BRCA1 or BRCA2 mutations. Nature Aging, 2021, 1, 838-849.	11.6	27
4	AXL Is a Driver of Stemness in Normal Mammary Gland and Breast Cancer. IScience, 2020, 23, 101649.	4.1	20
5	Superresolution microscopy reveals linkages between ribosomal DNA on heterologous chromosomes. Journal of Cell Biology, 2019, 218, 2492-2513.	5.2	40
6	Breast Tissue Biology Expands the Possibilities for Prevention of Age-Related Breast Cancers. Frontiers in Cell and Developmental Biology, 2019, 7, 174.	3.7	6
7	Experimental and pan-cancer genome analyses reveal widespread contribution of acrylamide exposure to carcinogenesis in humans. Genome Research, 2019, 29, 521-531.	5.5	57
8	Genetic variation and radiation quality impact cancer promoting cellular phenotypes in response to HZE exposure. Life Sciences in Space Research, 2019, 20, 101-112.	2.3	2
9	Delayed Î ³ H2AX foci disappearance in mammary epithelial cells from aged women reveals an age-associated DNA repair defect. Aging, 2019, 11, 1510-1523.	3.1	13
10	Characterizing cellular mechanical phenotypes with mechano-node-pore sensing. Microsystems and Nanoengineering, 2018, 4, .	7.0	38
11	High-Dimensional Phenotyping Identifies Age-Emergent Cells in Human Mammary Epithelia. Cell Reports, 2018, 23, 1205-1219.	6.4	39
12	Different culture media modulate growth, heterogeneity, and senescence in human mammary epithelial cell cultures. PLoS ONE, 2018, 13, e0204645.	2.5	13
13	Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clinical Proteomics, 2018, 15, 21.	2.1	15
14	Microenvironment-Induced Non-sporadic Expression of the AXL and cKIT Receptors Are Related to Epithelial Plasticity and Drug Resistance. Frontiers in Cell and Developmental Biology, 2018, 6, 41.	3.7	22
15	Age-related gene expression in luminal epithelial cells is driven by a microenvironment made from myoepithelial cells. Aging, 2017, 9, 2026-2051.	3.1	21
16	184AA3: a xenograft model of ER+ breast adenocarcinoma. Breast Cancer Research and Treatment, 2016, 155, 37-52.	2.5	8
17	Delineating transcriptional networks of prognostic gene signatures refines treatment recommendations for lymph nodeâ€negative breast cancer patients. FEBS Journal, 2015, 282, 3455-3473.	4.7	12
18	The senescent methylome and its relationship with cancer, ageing and germline genetic variation in humans. Genome Biology, 2015, 16, 194.	8.8	40

#	Article	IF	CITATIONS
19	Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells. Frontiers in Cell and Developmental Biology, 2015, 3, 13.	3.7	25
20	A lincRNA connected to cell mortality and epigenetically-silenced in most common human cancers. Epigenetics, 2015, 10, 1074-1083.	2.7	28
21	Exome-wide mutation profile in benzo[a]pyrene-derived post-stasis and immortal human mammary epithelial cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 775-776, 48-54.	1.7	29
22	Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations. Cell Cycle, 2014, 13, 3423-3435.	2.6	60
23	Cellular senescence mediated by p16INK4A-coupled miRNA pathways. Nucleic Acids Research, 2014, 42, 1606-1618.	14.5	63
24	Age-Related Dysfunction in Mechanotransduction Impairs Differentiation of Human Mammary Epithelial Progenitors. Cell Reports, 2014, 7, 1926-1939.	6.4	74
25	Aging phenotypes in cultured normal human mammary epithelial cells are correlated with decreased telomerase activity independent of telomere length. Genome Integrity, 2013, 4, 4.	1.0	8
26	The Regulation of SOX7 and Its Tumor Suppressive Role in Breast Cancer. American Journal of Pathology, 2013, 183, 1645-1653.	3.8	52
27	DNA Repair Gene Patterns as Prognostic and Predictive Factors in Molecular Breast Cancer Subtypes. Oncologist, 2013, 18, 1063-1073.	3.7	75
28	Processing of Human Reduction Mammoplasty and Mastectomy Tissues for Cell Culture. Journal of Visualized Experiments, 2013, , .	0.3	52
29	Common chromosome fragile sites in human and murine epithelial cells and <i>FHIT/FRA3B</i> lossâ€induced global genome instability. Genes Chromosomes and Cancer, 2013, 52, 1017-1029.	2.8	54
30	Constitutive CCND1/CDK2 Activity Substitutes for p53 Loss, or MYC or Oncogenic RAS Expression in the Transformation of Human Mammary Epithelial Cells. PLoS ONE, 2013, 8, e53776.	2.5	22
31	miRNA Gene Promoters Are Frequent Targets of Aberrant DNA Methylation in Human Breast Cancer. PLoS ONE, 2013, 8, e54398.	2.5	110
32	Accumulation of Multipotent Progenitors with a Basal Differentiation Bias during Aging of Human Mammary Epithelia. Cancer Research, 2012, 72, 3687-3701.	0.9	94
33	Cell-Type Specific DNA Methylation Patterns Define Human Breast Cellular Identity. PLoS ONE, 2012, 7, e52299.	2.5	22
34	Oncogenes induce senescence with incomplete growth arrest and suppress the DNA damage response in immortalized cells. Aging Cell, 2011, 10, 949-961.	6.7	35
35	Epigenetic regulation of normal human mammary cell type–specific miRNAs. Genome Research, 2011, 21, 2026-2037.	5.5	68
36	TGF-β signaling engages an ATM-CHK2-p53–independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8668-8673.	7.1	86

#	Article	IF	CITATIONS
37	Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3264-3269.	7.1	52
38	Role for DNA Methylation in the Regulation of miR-200c and miR-141 Expression in Normal and Cancer Cells. PLoS ONE, 2010, 5, e8697.	2.5	268
39	Exon-Level Microarray Analyses Identify Alternative Splicing Programs in Breast Cancer. Molecular Cancer Research, 2010, 8, 961-974.	3.4	121
40	Primary Cilium-Dependent and -Independent Hedgehog Signaling Inhibits p16INK4A. Molecular Cell, 2010, 40, 533-547.	9.7	52
41	Molecular Distinctions between Stasis and Telomere Attrition Senescence Barriers Shown by Long-term Culture of Normal Human Mammary Epithelial Cells. Cancer Research, 2009, 69, 7557-7568.	0.9	144
42	Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization. Cancer Research, 2009, 69, 5251-5258.	0.9	113
43	Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments. Integrative Biology (United Kingdom), 2009, 1, 70-79.	1.3	166
44	Cell type-specific DNA methylation patterns in the human breast. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14076-14081.	7.1	210
45	Karyotypic Instability and Centrosome Aberrations in the Progeny of Finite Life-Span Human Mammary Epithelial Cells Exposed to Sparsely or Densely Ionizing Radiation. Radiation Research, 2008, 170, 23-32.	1.5	28
46	Inactivation of p53 Function in Cultured Human Mammary Epithelial Cells Turns the Telomere-Length Dependent Senescence Barrier from Agonescence into Crisis. Cell Cycle, 2007, 6, 1927-1936.	2.6	65
47	Transcriptional changes associated with breast cancer occur as normal human mammary epithelial cells overcome senescence barriers and become immortalized. Molecular Cancer, 2007, 6, 7.	19.2	44
48	ZNF652, A Novel Zinc Finger Protein, Interacts with the Putative Breast Tumor Suppressor CBFA2T3 to Repress Transcription. Molecular Cancer Research, 2006, 4, 655-665.	3.4	50
49	Caspase-independent cytochrome c release is a sensitive measure of low-level apoptosis in cell culture models. Aging Cell, 2005, 4, 217-222.	6.7	26
50	Accumulation and altered localization of telomere-associated protein TRF2 in immortally transformed and tumor-derived human breast cells. Oncogene, 2005, 24, 3369-3376.	5.9	37
51	Chromatin Inactivation Precedes De Novo DNA Methylation during the Progressive Epigenetic Silencing of the RASSF1A Promoter. Molecular and Cellular Biology, 2005, 25, 3923-3933.	2.3	123
52	In situ analyses of genome instability in breast cancer. Nature Genetics, 2004, 36, 984-988.	21.4	337
53	Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines. Oncogene, 2003, 22, 5238-5251.	5.9	63
54	Human epithelial cell immortalization as a step in carcinogenesis. Cancer Letters, 2003, 194, 199-208.	7.2	70

#	Article	IF	CITATIONS
55	Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene, 2002, 21, 6328-6339.	5.9	82
56	Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature, 2001, 409, 633-637.	27.8	604
57	Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene, 2000, 19, 5314-5323.	5.9	51
58	Culture models of human mammary epithelial cell transformation. Journal of Mammary Gland Biology and Neoplasia, 2000, 5, 365-378.	2.7	45
59	Establishment and Characterization of a Breast Cell Strain Containing a BRCA1 185delAG Mutation. Gynecologic Oncology, 2000, 77, 121-128.	1.4	11
60	Interindividual variation in CYP1A1 expression in breast tissue and the role of genetic polymorphism. Carcinogenesis, 2000, 21, 2119-2122.	2.8	31
61	Viral oncogenes accelerate conversion to immortality of cultured conditionally immortal human mammary epithelial cells. Oncogene, 1999, 18, 2169-2180.	5.9	44
62	Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene, 1998, 17, 199-205.	5.9	249
63	Gradual Phenotypic Conversion Associated with Immortalization of Cultured Human Mammary Epithelial Cells. Molecular Biology of the Cell, 1997, 8, 2391-2405.	2.1	64
64	Insulin receptor overexpression in 184B5 human mammary epithelial cells induces a ligand-dependent transformed phenotype. Journal of Cellular Biochemistry, 1995, 57, 666-669.	2.6	59
65	Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clinical and Experimental Metastasis, 1994, 12, 181-194.	3.3	78
66	Phospholipases A2 in ras-transformed and immortalized human mammary epithelial cells. Cancer Letters, 1994, 86, 11-21.	7.2	23
67	Growth, differentiation, and transformation of human mammary epithelial cells in culture. Cancer Treatment and Research, 1994, 71, 29-48.	0.5	11
68	TGF? induction of extracellular matrix associated proteins in normal and transformed human mammary epithelial cells in culture is independent of growth effects. Journal of Cellular Physiology, 1993, 155, 210-221.	4.1	65
69	Blockage of EGF Receptor Signal Transduction Causes Reversible Arrest of Normal and Immortal Human Mammary Epithelial Cells with Synchronous Reentry into the Cell Cycle. Experimental Cell Research, 1993, 208, 175-188.	2.6	77
70	p53 Mutations in human immortalized epithelial cell lines. Carcinogenesis, 1993, 14, 833-839.	2.8	406
71	Effects of Sequence of Thioated Oligonucleotides on Cultured Human Mammary Epithelial Cells. Antisense Research and Development, 1993, 3, 67-77.	3.1	133
72	Role of DNA repair in malignant neoplastic transformation of human mammary epithelial cells in culture. Carcinogenesis, 1992, 13, 1137-1141.	2.8	15

#	Article	IF	CITATIONS
73	Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation. Advances in Space Research, 1992, 12, 127-136.	2.6	8
74	Stromal influences on transformation of human mammary epithelial cells overexpressingc-myc and SV40T. Journal of Cellular Physiology, 1990, 145, 207-216.	4.1	53
75	Radiation Studies on Sensitivity and Repair of Human Mammary Epithelial Cells. International Journal of Radiation Biology, 1989, 56, 605-609.	1.8	13
76	Chromosome analyses of human mammary epithelial cells at stages of chemical-induced transformation progression to immortality. Cancer Genetics and Cytogenetics, 1989, 37, 249-261.	1.0	69
77	Human mammary epithelial cells in culture: differentiation and transformation. Cancer Treatment and Research, 1988, 40, 1-24.	0.5	47
78	Response to Doxorubicin of Cultured Normal and Cancerous Human Mammary Epithelial Cells <xref ref-type="fn" rid="FN2">2<xref ref-type="fn" rid="FN3">3</xref>. Journal of the National Cancer Institute, 1985, , .</xref 	6.3	11
79	Factors influencing benzo[a]pyrene metabolism in human mammary epithelial cells in culture. Carcinogenesis, 1985, 6, 1017-1022.	2.8	21
80	Growth of diploid cells from breast cancers. Cancer Genetics and Cytogenetics, 1985, 16, 49-64.	1.0	71
81	Thioesterase II, a New Marker Enzyme for Human Cells of Breast Epithelial Origin2. Journal of the National Cancer Institute, 1984, 73, 323-329.	6.3	16
82	Response of Cultured Normal Human Mammary Epithelial Cells to X Rays. Radiation Research, 1983, 96, 476.	1.5	17
83	Cholera toxin stimulation of human mammary epithelial cells in culture. In Vitro, 1982, 18, 531-537.	1.2	91
84	Culture of Human Mammary Epithelial Cells. , 0, , 95-135.		6
85	Viral oncogenes accelerate conversion to immortality of cultured conditionally immortal human mammary epithelial cells. , 0, .		2