Nicolas Bouché

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4215439/publications.pdf

Version: 2024-02-01

34 4,431 papers citations

22 26
h-index g-index

34 34 all docs docs citations

34 times ranked 5776 citing authors

#	Article	IF	Citations
1	GABA in plants: just a metabolite?. Trends in Plant Science, 2004, 9, 110-115.	8.8	960
2	An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO Journal, 2006, 25, 3347-3356.	7.8	430
3	DRB4-Dependent TAS3 trans-Acting siRNAs Control Leaf Morphology through AGO7. Current Biology, 2006, 16, 927-932.	3.9	423
4	PLANT-SPECIFIC CALMODULIN-BINDING PROTEINS. Annual Review of Plant Biology, 2005, 56, 435-466.	18.7	379
5	Mitochondrial succinic-semialdehyde dehydrogenase of the Â-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6843-6848.	7.1	375
6	A Novel Family of Calmodulin-binding Transcription Activators in Multicellular Organisms. Journal of Biological Chemistry, 2002, 277, 21851-21861.	3.4	258
7	microRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. Plant Journal, 2010, 62, 454-462.	5.7	210
8	GABA signaling: a conserved and ubiquitous mechanism. Trends in Cell Biology, 2003, 13, 607-610.	7.9	197
9	Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant Journal, 2000, 24, 533-542.	5.7	173
10	MicroRNA-directed regulation: to cleave or not to cleave. Trends in Plant Science, 2008, 13, 359-367.	8.8	128
11	Rapid Establishment of Genetic Incompatibility through Natural Epigenetic Variation. Current Biology, 2012, 22, 326-331.	3.9	122
12	The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Molecular Biology, 2004, 55, 315-325.	3.9	107
13	Redundant and Specific Roles of the ARGONAUTE Proteins AGO1 and ZLL in Development and Small RNA-Directed Gene Silencing. PLoS Genetics, 2009, 5, e1000646.	3.5	107
14	A non-canonical plant microRNA target site. Nucleic Acids Research, 2014, 42, 5270-5279.	14.5	105
15	Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta, 2010, 232, 165-178.	3.2	87
16	Mutants of GABA Transaminase (POP2) Suppress the Severe Phenotype of succinic semialdehyde dehydrogenase (ssadh) Mutants in Arabidopsis. PLoS ONE, 2008, 3, e3383.	2.5	74
17	Redistribution of CHH Methylation and Small Interfering RNAs across the Genome of Tomato <i>ddm1</i> Mutants. Plant Cell, 2018, 30, 1628-1644.	6.6	65
18	Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Research, 2015, 43, 8464-8475.	14.5	47

#	Article	IF	CITATIONS
19	Invasion of the Arabidopsis Genome by the Tobacco Retrotransposon Tnt1 Is Controlled by Reversible Transcriptional Gene Silencing Â. Plant Physiology, 2008, 147, 1264-1278.	4.8	45
20	New insights into miR398 functions in Arabidopsis. Plant Signaling and Behavior, 2010, 5, 684-686.	2.4	33
21	An Arabidopsis Natural Epiallele Maintained by a Feed-Forward Silencing Loop between Histone and DNA. PLoS Genetics, 2017, 13, e1006551.	3.5	25
22	SHOOT GROWTH1 Maintains Arabidopsis Epigenomes by Regulating IBM1. PLoS ONE, 2014, 9, e84687.	2.5	24
23	Antagonistic Actions of FPA and IBM2 Regulate Transcript Processing from Genes Containing Heterochromatin. Plant Physiology, 2019, 180, 392-403.	4.8	24
24	Post-transcriptional gene silencing triggers dispensable DNA methylation in gene body in Arabidopsis. Nucleic Acids Research, 2019, 47, 9104-9114.	14.5	15
25	Interplay between chromatin and RNA processing. Current Opinion in Plant Biology, 2014, 18, 60-65.	7.1	13
26	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. PLoS Genetics, 2020, 16, e1008894.	3.5	5
27	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. , 2020, 16, e1008894.		0
28	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization., 2020, 16, e1008894.		0
29	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. , 2020, 16, e1008894.		0
30	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization., 2020, 16, e1008894.		0
31	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. , 2020, 16, e1008894.		0
32	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization., 2020, 16, e1008894.		0
33	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. , 2020, 16, e1008894.		0
34	AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization., 2020, 16, e1008894.		0