
Hiromu Tanimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Voluntary intake of psychoactive substances is regulated by the dopamine receptor Dop1R1 in Drosophila. Scientific Reports, 2021, 11, 3432.	3.3	8
2	Mushroom body output differentiates memory processes and distinct memory-guided behaviors. Current Biology, 2021, 31, 1294-1302.e4.	3.9	8
3	A population of neurons that produce hugin and express the <i>diuretic hormone 44 receptor</i> gene projects to the corpora allata in <i>Drosophila melanogaster</i> . Development Growth and Differentiation, 2021, 63, 249-261.	1.5	8
4	<i>Drosophila</i> acquires seconds-scale rhythmic behavior. Journal of Experimental Biology, 2021, 224, .	1.7	0
5	Presynaptic inhibition of dopamine neurons controls optimistic bias. ELife, 2021, 10, .	6.0	8
6	The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nature Communications, 2021, 12, 4818.	12.8	42
7	Neurochemical Organization of the Drosophila Brain Visualized by Endogenously Tagged Neurotransmitter Receptors. Cell Reports, 2020, 30, 284-297.e5.	6.4	93
8	The Corazonin-PTTH Neuronal Axis Controls Systemic Body Growth by Regulating Basal Ecdysteroid Biosynthesis in Drosophila melanogaster. Current Biology, 2020, 30, 2156-2165.e5.	3.9	38
9	Cofactor-enabled functional expression of fruit fly, honeybee, and bumblebee nicotinic receptors reveals picomolar neonicotinoid actions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16283-16291.	7.1	61
10	Dopamine Receptor Dop1R2 Stabilizes Appetitive Olfactory Memory through the Raf/MAPK Pathway in <i>Drosophila</i> . Journal of Neuroscience, 2020, 40, 2935-2942.	3.6	6
11	Environmental Light Is Required for Maintenance of Long-Term Memory in <i>Drosophila</i> . Journal of Neuroscience, 2020, 40, 1427-1439.	3.6	19
12	Future perspectives of neurogenetics – in honor of Troy D. Zars (1967–2018). Journal of Neurogenetics, 2020, 34, 1-1.	1.4	2
13	Neuronal octopamine signaling regulates mating-induced germline stem cell increase in female Drosophila melanogaster. ELife, 2020, 9, .	6.0	26
14	Comparative behavioral genetics: the Yamamoto approach. Journal of Neurogenetics, 2019, 33, 41-43.	1.4	0
15	Bodily Awareness: How Flies Learn Their Own Body Size. Current Biology, 2019, 29, R572-R574.	3.9	0
16	Quantification of Aggregation and Associated Brain Areas in Drosophila Melanogaster. , 2019, , .		0
17	Photo gallery for the Yamamoto special issue. Journal of Neurogenetics, 2019, 33, 152-156.	1.4	0
18	Tango knock-ins visualize endogenous activity of G protein-coupled receptors in Drosophila. Journal of Neurogenetics, 2019, 33, 44-51.	1.4	8

HIROMU ΤΑΝΙΜΟΤΟ

#	Article	IF	CITATIONS
19	Courtship behavior induced by appetitive olfactory memory. Journal of Neurogenetics, 2019, 33, 143-151.	1.4	4
20	Data-driven analysis of motor activity implicates 5-HT2A neurons in backward locomotion of larval Drosophila. Scientific Reports, 2018, 8, 10307.	3.3	7
21	Behavioral Modulation by Spontaneous Activity of Dopamine Neurons. Frontiers in Systems Neuroscience, 2017, 11, 88.	2.5	22
22	The Role of the Gustatory System in the Coordination of Feeding. ENeuro, 2017, 4, ENEURO.0324-17.2017.	1.9	11
23	Suppression of Dopamine Neurons Mediates Reward. PLoS Biology, 2016, 14, e1002586.	5.6	82
24	Dynamics of memory-guided choice behavior in <i>Drosophila</i> . Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2016, 92, 346-357.	3.8	12
25	Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila. Nature Communications, 2016, 7, 10678.	12.8	54
26	Four Individually Identified Paired Dopamine Neurons Signal Reward in Larval Drosophila. Current Biology, 2016, 26, 661-669.	3.9	96
27	Direct neural pathways convey distinct visual information to Drosophila mushroom bodies. ELife, 2016, 5, .	6.0	119
28	A model for non-monotonic intensity coding. Royal Society Open Science, 2015, 2, 150120.	2.4	6
29	Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster. PLoS ONE, 2015, 10, e0126986.	2.5	13
30	Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proceedings of the United States of America, 2015, 112, 578-583.	7.1	205
31	Reversing Stimulus Timing in Visual Conditioning Leads to Memories with Opposite Valence in Drosophila. PLoS ONE, 2015, 10, e0139797.	2.5	23
32	Reward signal in a recurrent circuit drives appetitive long-term memory formation. ELife, 2015, 4, e10719.	6.0	127
33	Converging Circuits Mediate Temperature and Shock Aversive Olfactory Conditioning in Drosophila. Current Biology, 2014, 24, 1712-1722.	3.9	68
34	Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. ELife, 2014, 3, e02395.	6.0	158
35	The neuronal architecture of the mushroom body provides a logic for associative learning. ELife, 2014, 3, e04577.	6.0	833
36	Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. ELife, 2014, 3, e04580.	6.0	576

HIROMU ΤΑΝΙΜΟΤΟ

#	Article	IF	CITATIONS
37	Color Discrimination with Broadband Photoreceptors. Current Biology, 2013, 23, 2375-2382.	3.9	123
38	Suppression of Conditioned Odor Approach by Feeding Is Independent of Taste and Nutritional Value in Drosophila. Current Biology, 2013, 23, 507-514.	3.9	33
39	Short Neuropeptide F Acts as a Functional Neuromodulator for Olfactory Memory in Kenyon Cells of Drosophila Mushroom Bodies. Journal of Neuroscience, 2013, 33, 5340-5345.	3.6	41
40	Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability. PLoS Genetics, 2012, 8, e1002768.	3.5	239
41	Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nature Neuroscience, 2012, 15, 1516-1523.	14.8	281
42	Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila. Nature Neuroscience, 2012, 15, 592-599.	14.8	137
43	Event Timing in Associative Learning: From Biochemical Reaction Dynamics to Behavioural Observations. PLoS ONE, 2012, 7, e32885.	2.5	26
44	A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature, 2012, 488, 512-516.	27.8	520
45	Different classes of input and output neurons reveal new features in microglomeruli of the adult <i>Drosophila</i> mushroom body calyx. Journal of Comparative Neurology, 2012, 520, 2185-2201.	1.6	84
46	Olfactory Trace Conditioning in <i>Drosophila</i> . Journal of Neuroscience, 2011, 31, 7240-7248.	3.6	43
47	Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nature Neuroscience, 2011, 14, 903-910.	14.8	244
48	Pan-Neuronal Knockdown of Calcineurin Reduces Sleep in the Fruit Fly, <i>Drosophila melanogaster</i> . Journal of Neuroscience, 2011, 31, 13137-13146.	3.6	44
49	Cellular site and molecular mode of synapsin action in associative learning. Learning and Memory, 2011, 18, 332-344.	1.3	47
50	Bruchpilot, A Synaptic Active Zone Protein for Anesthesia-Resistant Memory. Journal of Neuroscience, 2011, 31, 3453-3458.	3.6	56
51	Specific Dopaminergic Neurons for the Formation of Labile Aversive Memory. Current Biology, 2010, 20, 1445-1451.	3.9	273
52	Appetitive and aversive visual learning in freely moving Drosophila. Frontiers in Behavioral Neuroscience, 2010, 4, 10.	2.0	37
53	Synapsin is selectively required for anesthesia-sensitive memory. Learning and Memory, 2010, 17, 76-79.	1.3	47
54	The Mushroom Body of Adult <i>Drosophila</i> Characterized by GAL4 Drivers. Journal of Neurogenetics, 2009, 23, 156-172.	1.4	322

HIROMU ΤΑΝΙΜΟΤΟ

#	Article	IF	CITATIONS
55	A map of octopaminergic neurons in the <i>Drosophila</i> brain. Journal of Comparative Neurology, 2009, 513, 643-667.	1.6	215
56	Neuronal assemblies of the <i>Drosophila</i> mushroom body. Journal of Comparative Neurology, 2008, 508, 711-755.	1.6	419
57	â€~Pain relief' learning in fruit flies. Animal Behaviour, 2008, 76, 1173-1185.	1.9	55
58	Multiple Memory Traces for Olfactory Reward Learning in <i>Drosophila</i> . Journal of Neuroscience, 2007, 27, 11132-11138.	3.6	104
59	Light Activation of an Innate Olfactory Avoidance Response in Drosophila. Current Biology, 2007, 17, 905-908.	3.9	127
60	A role for Synapsin in associative learning: The Drosophila larva as a study case. Learning and Memory, 2005, 12, 224-231.	1.3	72
61	Event timing turns punishment to reward. Nature, 2004, 430, 983-983.	27.8	166
62	An engram found? Evaluating the evidence from fruit flies. Current Opinion in Neurobiology, 2004, 14, 737-744.	4.2	164
63	Androgen-Dependent Neurodegeneration by Polyglutamine-Expanded Human Androgen Receptor in Drosophila. Neuron, 2002, 35, 855-864.	8.1	291
64	Hedgehog Creates a Gradient of DPP Activity in Drosophila Wing Imaginal Discs. Molecular Cell, 2000, 5, 59-71.	9.7	375
65	brinker is a target of Dpp in Drosophila that negatively regulates Dpp-dependent genes. Nature, 1999, 398, 242-246.	27.8	212