List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4215045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science, 2015, 349, aab0689.	12.6	376
2	The Cassini Cosmic Dust Analyzer. Space Science Reviews, 2004, 114, 465-518.	8.1	230
3	Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. Journal of Geophysical Research, 2000, 105, 10343-10352.	3.3	152
4	Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2019, 630, A24.	5.1	100
5	Io as a source of the jovian dust streams. Nature, 2000, 405, 48-50.	27.8	84
6	Detection of an impact-generated dust cloud around Ganymede. Nature, 1999, 399, 558-560.	27.8	79
7	A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planetary and Space Science, 2000, 48, 1457-1471.	1.7	71
8	Cassini between Venus and Earth: Detection of interstellar dust. Journal of Geophysical Research, 2003, 108, LIS 7-1-LIS 7-9.	3.3	68
9	Impact-generated dust clouds surrounding the Galilean moons. Icarus, 2003, 164, 170-187.	2.5	65
10	The Galactic Environment of the Sun: Interstellar Material Inside and Outside of the Heliosphere. Space Science Reviews, 2009, 146, 235-273.	8.1	61
11	Penetration of the heliosphere by the interstellar dust stream during solar maximum. Journal of Geophysical Research, 2003, 108, .	3.3	59
12	Interstellar Dust in the Solar System. Space Science Reviews, 2007, 130, 401-408.	8.1	59
13	SIXTEEN YEARS OF <i>ULYSSES</i> INTERSTELLAR DUST MEASUREMENTS IN THE SOLAR SYSTEM. III. SIMULATIONS AND DATA UNVEIL NEW INSIGHTS INTO LOCAL INTERSTELLAR DUST. Astrophysical Journal, 2015, 812, 141.	4.5	57
14	Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. Journal of Geophysical Research, 1998, 103, 20011-20022.	3.3	56
15	Cassini between Earth and asteroid belt: first in-situ charge measurements of interplanetary grains. Icarus, 2004, 171, 317-335.	2.5	53
16	The Philae lander mission and science overview. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160248.	3.4	53
17	Interstellar dust flux measurements by the Galileo dust instrument between the orbits of Venus and Mars. Journal of Geophysical Research, 2005, 110, .	3.3	47
18	Jovian dust streams: A monitor of Io's volcanic plume activity. Geophysical Research Letters, 2003, 30, .	4.0	43

#	Article	IF	CITATIONS
19	Interstellar Dust Inside and Outside the Heliosphere. Space Science Reviews, 2009, 143, 347-356.	8.1	42
20	A tenuous dust ring of Jupiter formed by escaping ejecta from the Galilean satellites. Journal of Geophysical Research, 2002, 107, 2-1.	3.3	40
21	SIXTEEN YEARS OF <i>ULYSSES</i> INTERSTELLAR DUST MEASUREMENTS IN THE SOLAR SYSTEM. I. MASS DISTRIBUTION AND GAS-TO-DUST MASS RATIO. Astrophysical Journal, 2015, 812, 139.	4.5	40
22	Three years of Galileo dust data: ii. 1993–1995. Planetary and Space Science, 1998, 47, 85-106.	1.7	38
23	The sculpting of Jupiter's gossamer rings by its shadow. Nature, 2008, 453, 72-75.	27.8	37
24	Analysis of the sensor characteristics of the Galileo dust detector with collimated Jovian dust stream particles. Planetary and Space Science, 1999, 47, 1015-1028.	1.7	35
25	Impact-generated dust clouds around planetary satellites: model versus Galileo data. Planetary and Space Science, 2005, 53, 625-641.	1.7	34
26	Dust Measurements During Galileo's Approach to Jupiter and Io Encounter. Science, 1996, 274, 399-401.	12.6	32
27	Dust measurements in the Jovian magnetosphere. Geophysical Research Letters, 1997, 24, 2171-2174.	4.0	32
28	Three years of Ulysses dust data: 2005 to 2007. Planetary and Space Science, 2010, 58, 951-964.	1.7	32
29	Four years of Ulysses dust data: 1996–1999. Planetary and Space Science, 2001, 49, 1303-1324.	1.7	31
30	Five years of Ulysses dust data: 2000–2004. Planetary and Space Science, 2006, 54, 932-956.	1.7	31
31	SIXTEEN YEARS OF <i>ULYSSES</i> INTERSTELLAR DUST MEASUREMENTS IN THE SOLAR SYSTEM. II. FLUCTUATIONS IN THE DUST FLOW FROM THE DATA. Astrophysical Journal, 2015, 812, 140.	4.5	31
32	2002 Kuiper prize lecture: Dust Astronomy. Icarus, 2005, 174, 1-14.	2.5	28
33	Ulysses jovian latitude scan of high-velocity dust streams originating from the jovian system. Planetary and Space Science, 2006, 54, 919-931.	1.7	28
34	Dust on the Outskirts of the Jovian System. Icarus, 2002, 157, 436-455.	2.5	26
35	The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space Journal, 2011, 2, 3-16.	2.3	26
36	Galileo in-situ dust measurements in Jupiter's gossamer rings. Icarus, 2009, 203, 198-213.	2.5	25

#	Article	IF	CITATIONS
37	One year of Galileo dust data from the Jovian system: 1996. Planetary and Space Science, 2001, 49, 1285-1301.	1.7	24
38	Modelling DESTINY+ interplanetary and interstellar dust measurements en route to the active asteroid (3200) Phaethon. Planetary and Space Science, 2019, 172, 22-42.	1.7	24
39	Heliospheric modulation of the interstellar dust flow on to Earth. Astronomy and Astrophysics, 2019, 621, A54.	5.1	23
40	The filtering of interstellar dust in the solar system. Astronomy and Astrophysics, 2013, 552, A130.	5.1	22
41	Influence of wall impacts on the Ulysses dust detector on understanding the interstellar dust flux. Planetary and Space Science, 2004, 52, 1287-1295.	1.7	21
42	Jovian dust streams: Probes of the Io plasma torus. Geophysical Research Letters, 2003, 30, .	4.0	20
43	Galileo long-term dust monitoring in the jovian magnetosphere. Planetary and Space Science, 2005, 53, 1109-1120.	1.7	19
44	The Dawn of Dust Astronomy. Space Science Reviews, 2019, 215, 1.	8.1	19
45	Collisional Evolution of the Inner Zodiacal Cloud. Planetary Science Journal, 2021, 2, 185.	3.6	18
46	Analysis of Ulysses data: Radiation pressure effects on dust particles. Astronomy and Astrophysics, 2004, 419, 1169-1174.	5.1	18
47	Decreased values of cosmic dust number density estimates in the Solar System. Icarus, 2005, 176, 440-452.	2.5	16
48	Galileo dust data from the jovian system: 1997–1999. Planetary and Space Science, 2006, 54, 879-910.	1.7	16
49	Dust Impact Monitor (SESAME-DIM) measurements at comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2015, 583, A15.	5.1	16
50	Interstellar dust in the solar system: model versus in situ spacecraft data. Astronomy and Astrophysics, 2019, 626, A37.	5.1	16
51	In situ observations of dust particles in Martian dust belts using a large-sensitive-area dust sensor. Planetary and Space Science, 2018, 156, 41-46.	1.7	14
52	Galileo dust data from the jovian system: 2000 to 2003. Planetary and Space Science, 2010, 58, 965-993.	1.7	13
53	Magnetic field modulated dust streams from Jupiter in interplanetary space. Planetary and Space Science, 2011, 59, 1455-1471.	1.7	13
54	In-Situ Monitoring of Interstellar Dust in the Inner Solar System. AIP Conference Proceedings, 2005, , .	0.4	10

#	Article	IF	CITATIONS
55	Compressive strength and elastic modulus at Agilkia on comet 67P/Churyumov-Gerasimenko derived from the SESAME/CASSE touchdown signals. Icarus, 2018, 303, 251-264.	2.5	9
56	Electrostatic lofting of dust grains from the surfaces of Thebe and Amalthea. Planetary and Space Science, 2020, 183, 104556.	1.7	9
57	Dynamics, Composition, and Origin of Jovian and Saturnian Dust-Stream Particles. Astrophysics and Space Science Library, 2012, , 77-117.	2.7	9
58	Helios spacecraft data revisited: detection of cometary meteoroid trails by following in situ dust impacts. Astronomy and Astrophysics, 2020, 643, A96.	5.1	9
59	Dust Impact Monitor (DIM) onboard Rosetta/Philae: Comparison of experimental results and the the theory behind the experiment. Planetary and Space Science, 2013, 84, 122-130.	1.7	8
60	A cosmic dust detection suite for the deep space Gateway. Advances in Space Research, 2021, 68, 85-104.	2.6	5
61	Interstellar Dust Flow through the Solar System. AIP Conference Proceedings, 2011, , .	0.4	4
62	Dust Impact Monitor (SESAME-DIM) on-board Rosetta/Philae: Aerogel as comet analog material. Icarus, 2018, 302, 1-9.	2.5	4
63	The Galactic Environment of the Sun: Interstellar Material Inside and Outside of the Heliosphere. , 2009, , 235-273.		4
64	Morphometric findings on the Nebra Sky Disc. Time and Mind, 2018, 11, 89-104.	0.5	3
65	Modelling cometary meteoroid stream traverses of the Martian Moons eXploration (MMX) spacecraft en route to Phobos. Earth, Planets and Space, 2021, 73, .	2.5	3
66	Dust environment predictions for the ESA L-class mission JUICE. Planetary and Space Science, 2013, 75, 117-128.	1.7	2
67	Surface mechanical properties of comet 67P. Japanese Journal of Applied Physics, 2019, 58, SG0801.	1.5	2
68	Interstellar Dust Inside and Outside the Heliosphere. Space Sciences Series of ISSI, 2008, , 347-356.	0.0	2
69	Formation of the Thebe Extension in the Ring System of Jupiter. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029654.	2.4	2
70	Die Kometenmission Rosetta. Physik in Unserer Zeit, 2016, 47, 274-281.	0.0	0