Mark J Mcbride

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4214683/publications.pdf

Version: 2024-02-01

87723 128067 4,873 65 38 60 citations g-index h-index papers 68 68 68 3291 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The surprisingly diverse ways that prokaryotes move. Nature Reviews Microbiology, 2008, 6, 466-476.	13.6	509
2	Bacterial Gliding Motility: Multiple Mechanisms for Cell Movement over Surfaces. Annual Review of Microbiology, 2001, 55, 49-75.	2.9	324
3	A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 276-281.	3.3	307
4	Gliding Motility and Por Secretion System Genes Are Widespread among Members of the Phylum Bacteroidetes. Journal of Bacteriology, 2013, 195, 270-278.	1.0	267
5	Novel Features of the Polysaccharide-Digesting Gliding Bacterium <i>Flavobacterium johnsoniae</i> as Revealed by Genome Sequence Analysis. Applied and Environmental Microbiology, 2009, 75, 6864-6875.	1.4	212
6	Genome Sequence of the Cellulolytic Gliding Bacterium Cytophaga hutchinsonii. Applied and Environmental Microbiology, 2007, 73, 3536-3546.	1.4	208
7	Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nature Communications, 2017, 8, 1685.	5.8	131
8	Flavobacterium johnsoniae Gliding Motility Genes Identified by mariner Mutagenesis. Journal of Bacteriology, 2005, 187, 6943-6952.	1.0	122
9	Flavobacterium johnsoniae GldK, GldL, GldM, and SprA Are Required for Secretion of the Cell Surface Gliding Motility Adhesins SprB and RemA. Journal of Bacteriology, 2013, 195, 3201-3212.	1.0	116
10	Helical flow of surface protein required for bacterial gliding motility. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11145-11150.	3.3	113
11	Flavobacterium gliding motility and the type IX secretion system. Current Opinion in Microbiology, 2015, 28, 72-77.	2.3	113
12	SprB Is a Cell Surface Component of the <i>Flavobacterium johnsoniae</i> Gliding Motility Machinery. Journal of Bacteriology, 2008, 190, 2851-2857.	1.0	96
13	Flavobacterium johnsoniae GldJ Is a Lipoprotein That Is Required for Gliding Motility. Journal of Bacteriology, 2005, 187, 2628-2637.	1.0	91
14	Flavobacterium johnsoniae Chitinase ChiA Is Required for Chitin Utilization and Is Secreted by the Type IX Secretion System. Journal of Bacteriology, 2014, 196, 961-970.	1.0	85
15	Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by $<$ scp $<$ i $><$ i $><$ i $><$ i $><$ i $>>$ obellia galactanivorans $<$ i $>>$. Environmental Microbiology, 2017, 19, 2164-2181.	1.8	84
16	The Family Flavobacteriaceae. , 2014, , 643-676.		83
17	Flavobacterium johnsoniae PorV Is Required for Secretion of a Subset of Proteins Targeted to the Type IX Secretion System. Journal of Bacteriology, 2015, 197, 147-158.	1.0	81
18	Cell Surface Filaments of the Gliding Bacterium <i>Flavobacterium johnsoniae</i> Revealed by Cryo-Electron Tomography. Journal of Bacteriology, 2007, 189, 7503-7506.	1.0	76

#	Article	IF	Citations
19	Bacteria that Glide with Helical Tracks. Current Biology, 2014, 24, R169-R173.	1.8	76
20	The Family Cytophagaceae., 2014,, 577-593.		75
21	Cloning and Characterization of the Flavobacterium johnsoniae Gliding-Motility Genes gldB and gldC. Journal of Bacteriology, 2000, 182, 911-918.	1.0	74
22	Mutations in Flavobacterium johnsoniae gldF and gldG Disrupt Gliding Motility and Interfere with Membrane Localization of GldA. Journal of Bacteriology, 2002, 184, 2370-2378.	1.0	74
23	Flavobacterium johnsoniae GldH Is a Lipoprotein That Is Required for Gliding Motility and Chitin Utilization. Journal of Bacteriology, 2003, 185, 6648-6657.	1.0	74
24	The Type IX Secretion System Is Required for Virulence of the Fish Pathogen Flavobacterium columnare. Applied and Environmental Microbiology, 2017, 83, .	1.4	74
25	Studies of growth and morphology of <i>Frankia</i> strains EAN1 _{pec} , Eul1 _c , Cpl1, and ACN1 ^{AG} . Canadian Journal of Botany, 1983, 61, 2768-2773.	1.2	70
26	GldI Is a Lipoprotein That Is Required for Flavobacterium johnsoniae Gliding Motility and Chitin Utilization. Journal of Bacteriology, 2004, 186, 2295-2302.	1.0	70
27	<i>Flavobacterium johnsoniae gldN</i> and <i>gldO</i> Are Partially Redundant Genes Required for Gliding Motility and Surface Localization of SprB. Journal of Bacteriology, 2010, 192, 1201-1211.	1.0	70
28	A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnology for Biofuels, 2016, 9, 260.	6.2	70
29	Flavobacterium johnsoniae RemA Is a Mobile Cell Surface Lectin Involved in Gliding. Journal of Bacteriology, 2012, 194, 3678-3688.	1.0	69
30	Deletion of the Cytophaga hutchinsonii type IX secretion system gene sprP results in defects in gliding motility and cellulose utilization. Applied Microbiology and Biotechnology, 2014, 98, 763-775.	1.7	66
31	Cytophaga-Flavobacterium Gliding Motility. Journal of Molecular Microbiology and Biotechnology, 2004, 7, 63-71.	1.0	64
32	Mutations in Flavobacterium johnsoniae <i>sprE</i> Result in Defects in Gliding Motility and Protein Secretion. Journal of Bacteriology, 2011, 193, 5322-5327.	1.0	63
33	<i>Flavobacterium johnsoniae sprB</i> Is Part of an Operon Spanning the Additional Gliding Motility Genes <i>sprC</i> , <i>sprD</i> , and <i>sprF</i> . Journal of Bacteriology, 2011, 193, 599-610.	1.0	60
34	Cloning and Characterization of the Flavobacterium johnsoniae Gliding Motility Genes gldD and gldE. Journal of Bacteriology, 2001, 183, 4167-4175.	1.0	59
35	Behavioral analysis of single cells of Myxococcus xanthusin response to prey cells of Escherichia coli. FEMS Microbiology Letters, 1996, 137, 227-231.	0.7	58
36	<i>Flavobacterium johnsoniae</i> SprA Is a Cell Surface Protein Involved in Gliding Motility. Journal of Bacteriology, 2007, 189, 7145-7150.	1.0	56

#	Article	IF	CITATIONS
37	Transposon Insertions in the Flavobacterium johnsoniae ftsX Gene Disrupt Gliding Motility and Cell Division. Journal of Bacteriology, 2000, 182, 1671-1679.	1.0	52
38	<i>Bacteroidetes</i> Gliding Motility and the Type IX Secretion System. Microbiology Spectrum, 2019, 7,	1.2	52
39	Development and Use of a Gene Deletion Strategy for Flavobacterium johnsoniae To Identify the Redundant Gliding Motility Genes <i>remF</i> , <i>remG</i> , <i>remH</i> , and <i>remI</i> . Journal of Bacteriology, 2011, 193, 2418-2428.	1.0	47
40	Diverse C-Terminal Sequences Involved in Flavobacterium johnsoniae Protein Secretion. Journal of Bacteriology, $2017, 199, \ldots$	1.0	45
41	Periplasmic Cytophaga hutchinsonii Endoglucanases Are Required for Use of Crystalline Cellulose as the Sole Source of Carbon and Energy. Applied and Environmental Microbiology, 2016, 82, 4835-4845.	1.4	41
42	The unusual cellulose utilization system of the aerobic soil bacterium Cytophaga hutchinsonii. Applied Microbiology and Biotechnology, 2017, 101, 7113-7127.	1.7	40
43	Untangling Flavobacterium johnsoniae Gliding Motility and Protein Secretion. Journal of Bacteriology, 2018, 200, .	1.0	33
44	The Type IX Secretion System Is Required for Virulence of the Fish Pathogen Flavobacterium psychrophilum. Applied and Environmental Microbiology, 2020, 86, .	1.4	33
45	Gene Deletion Strategy To Examine the Involvement of the Two Chondroitin Lyases in Flavobacterium columnare Virulence. Applied and Environmental Microbiology, 2015, 81, 7394-7402.	1.4	28
46	The Carboxy-Terminal Region of Flavobacterium johnsoniae SprB Facilitates Its Secretion by the Type IX Secretion System and Propulsion by the Gliding Motility Machinery. Journal of Bacteriology, 2019, 201, .	1.0	26
47	Mutations in Flavobacterium johnsoniae secDF Result in Defects in Gliding Motility and Chitin Utilization. Journal of Bacteriology, 2006, 188, 348-351.	1.0	25
48	Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System. MBio, 2021, 12, .	1.8	24
49	Comparative Analysis of Cellulophaga algicola and Flavobacterium johnsoniae Gliding Motility. Journal of Bacteriology, 2016, 198, 1743-1754.	1.0	19
50	Photolyase of Myxococcus xanthus, a Gram-negative Eubacterium, Is More Similar to Photolyases Found in Archaea and "Higher―Eukaryotes than to Photolyases of Other Eubacteria. Journal of Biological Chemistry, 1996, 271, 6252-6259.	1.6	17
51	Germination and physiological properties of Frankia spores. Plant and Soil, 2003, 254, 57-67.	1.8	17
52	Shining a Light on an Opportunistic Pathogen. Journal of Bacteriology, 2010, 192, 6325-6326.	1.0	16
53	In situ imaging of bacterial outer membrane projections and associated protein complexes using electron cryo-tomography. ELife, 2021, 10, .	2.8	16
54	Outer membrane proteins related to SusC and SusD are not required for Cytophaga hutchinsonii cellulose utilization. Applied Microbiology and Biotechnology, 2015, 99, 6339-6350.	1.7	15

#	Article	IF	CITATIONS
55	Complete Genome Sequence of the Fish Pathogen Flavobacterium columnare Strain C#2. Genome Announcements, 2016, 4, .	0.8	15
56	Dynamic proton-dependent motors power type IX secretion and gliding motility in Flavobacterium. PLoS Biology, 2022, 20, e3001443.	2.6	14
57	Development of techniques for the genetic manipulation of the gliding bacteria <i>Lysobacter enzymogenes</i> and <i>Lysobacter brunescens</i> . Canadian Journal of Microbiology, 1996, 42, 896-902.	0.8	13
58	Type IX Secretion System Effectors and Virulence of the Model Flavobacterium columnare Strain MS-FC-4. Applied and Environmental Microbiology, 2022, 88, AEM0170521.	1.4	11
59	Type B CTD Proteins Secreted by the Type IX Secretion System Associate with PorP-like Proteins for Cell Surface Anchorage. International Journal of Molecular Sciences, 2022, 23, 5681.	1.8	8
60	Draft Genome Sequence of the Fish Pathogen Flavobacterium columnare Strain MS-FC-4. Genome Announcements, 2018, 6, .	0.8	7
61	Germination and physiological properties of Frankia spores. , 2003, , 57-67.		5
62	<i>Bacteroidetes</i> Gliding Motility and the Type IX Secretion System., 0,, 363-374.		4
63	The Monoheme <i>c</i> Subunit of Respiratory Alternative Complex III Is Not Essential for Electron Transfer to Cytochrome <i>aa</i> ₃ in Flavobacterium johnsoniae. Microbiology Spectrum, 2021, 9, e0013521.	1.2	2
64	Helical Flow of Surface Protein required for Bacterial Locomotion. Biophysical Journal, 2013, 104, 639a.	0.2	1
65	Nonflagellar Bacterial Motility. , 2018, , 319-319.		O