Sohel Rana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4214136/publications.pdf Version: 2024-02-01

SOHEL RANA

#	Article	IF	CITATIONS
1	Spiral Photonic Crystal Fiber-Based Dual-Polarized Surface Plasmon Resonance Biosensor. IEEE Sensors Journal, 2018, 18, 133-140.	4.7	216
2	A Highly Sensitive Gold-Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance. Photonics, 2017, 4, 18.	2.0	115
3	Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Optical Fiber Technology, 2017, 34, 6-11.	2.7	83
4	A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime. IEEE Photonics Technology Letters, 2016, 28, 899-902.	2.5	81
5	A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission. IEEE Photonics Technology Letters, 2016, 28, 1537-1540.	2.5	78
6	Porous core photonic crystal fibre for ultraâ€low material loss in THz regime. IET Communications, 2016, 10, 2179-2183.	2.2	72
7	Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime. IEEE Photonics Technology Letters, 2015, 27, 2222-2225.	2.5	68
8	Ultra low-loss hybrid core porous fiber for broadband applications. Applied Optics, 2017, 56, 1232.	2.1	65
9	Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Optical Fiber Technology, 2015, 24, 38-43.	2.7	61
10	Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance. Optics Letters, 2016, 41, 440.	3.3	58
11	Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime. Optics Communications, 2018, 410, 452-456.	2.1	42
12	Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime. Optical Engineering, 2016, 55, 076117.	1.0	38
13	Proposal for a low loss porous core octagonal photonic crystal fiber for T-ray wave guiding. Optical Engineering, 2014, 53, 115107.	1.0	37
14	Bend-Insensitive and Low-Loss Porous Core Spiral Terahertz Fiber. IEEE Photonics Technology Letters, 2015, 27, 2242-2245.	2.5	37
15	Single-mode porous fiber for low-loss polarization maintaining terahertz transmission. Optical Engineering, 2016, 55, 076114.	1.0	34
16	Low Loss and Low Dispersion Fiber for Transmission Applications in the Terahertz Regime. IEEE Photonics Technology Letters, 2017, 29, 830-833.	2.5	28
17	Polarization filter realization using low-loss hollow-core anti-resonant fiber in THz regime. Results in Physics, 2020, 17, 103092.	4.1	24
18	A Highly Sensitive, Polarization Maintaining Photonic Crystal Fiber Sensor Operating in the THz Regime. Photonics, 2018, 5, 40.	2.0	22

SOHEL RANA

#	Article	IF	CITATIONS
19	Dispersion flattened, low-loss porous fiber for single-mode terahertz wave guidance. Optical Engineering, 2015, 54, 055102.	1.0	15
20	Ultraâ€high birefringent and dispersionâ€flattened low loss singleâ€mode terahertz wave guiding. IET Communications, 2016, 10, 1579-1583.	2.2	15
21	A highly birefringent slotted-core THz fiber. , 2016, , .		7
22	Modeling of the Creation of an Internal Cladding in Sapphire Optical Fiber Using the ⁶ Li(n,α) ³ H Reaction. Journal of Lightwave Technology, 2018, 36, 5381-5387.	4.6	7
23	Hybrid porousâ€core microstructure terahertz fibre with ultraâ€low bending loss and low effective material loss. IET Communications, 2018, 12, 109-113.	2.2	6
24	Numerical Analysis of Radiation Effects on Fiber Optic Sensors. Sensors, 2021, 21, 4111.	3.8	4
25	Differently Structured Fabry-Perot Interferometers for Gas Pressure Monitoring. IEEE Sensors Journal, 2022, 22, 14102-14108.	4.7	4
26	Towards the design of a wideband reflective long period grating distributed sensor. Journal of Physics Communications, 2020, 4, 065015.	1.2	3
27	Active Compensation of Radiation Effects on Optical Fibers for Sensing Applications. Sensors, 2021, 21, 8193.	3.8	3
28	Extremely low-loss single-mode photonic crystal fiber in the terahertz regime. , 2015, , .		2
29	Low-loss and dispersion flattened terahertz fiber. Optik, 2021, 229, 166293.	2.9	2
30	Ultra-low loss THz waveguide with flat EML and near zero flat dispersion properties. , 2016, , .		1
31	Effects of Triangular Core Rotation of a Hybrid Porous Core Terahertz Waveguide. International Journal of Electronics and Telecommunications, 2017, 63, 25-31.	0.6	1
32	Reflective long period grating based temperature sensor. , 2021, , .		1
33	Role of Metal Coating Parameters on the Reflective Long Period Grating Spectrum. , 2019, , .		1
34	A simple and cost-effective metal coating method for reflective long period grating sensors. , 2020, , .		1
35	Real-time measurement of parametric influences on the refractive index and length changes in silica optical fibers. Optics Express, 2022, 30, 15659.	3.4	1
36	Low loss rotated porous core octagonal single-mode fiber for THz radiation. , 2016, , .		0

#	Article	IF	CITATIONS
37	Construction Project Managers' Perception on Top Job Responsibilities in the Context of Malaysia. GATR Global Journal of Business Social Sciences Review, 2014, 2, 18-28.	0.1	0