Michael Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4213733/publications.pdf

Version: 2024-02-01

105 papers

6,438 citations

71102 41 h-index 69250 77 g-index

105 all docs

105 docs citations

105 times ranked 6265 citing authors

#	Article	IF	CITATIONS
1	Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Annals of Neurology, 2008, 63, 444-453.	5. 3	563
2	The Mammalian Target of Rapamycin Signaling Pathway Mediates Epileptogenesis in a Model of Temporal Lobe Epilepsy. Journal of Neuroscience, 2009, 29, 6964-6972.	3.6	467
3	Astrocyte-specificTSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Annals of Neurology, 2002, 52, 285-296.	5 . 3	330
4	Extracellular Vesicle-Contained eNAMPT Delays Aging and Extends Lifespan in Mice. Cell Metabolism, 2019, 30, 329-342.e5.	16.2	239
5	The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia, 2011, 52, e7-e11.	5.1	223
6	Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of Tuberous Sclerosis Complex. Human Molecular Genetics, 2011, 20, 445-454.	2.9	191
7	Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies. Epilepsia, 2010, 51, 27-36.	5.1	183
8	Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Annals of Neurology, 2003, 54, 251-256.	5. 3	176
9	Successive neuron loss in the thalamus and cortex in a mouse model of infantile neuronal ceroid lipofuscinosis. Neurobiology of Disease, 2007, 25, 150-162.	4.4	155
10	Mechanisms of Epileptogenesis in Tuberous Sclerosis Complex and Related Malformations of Cortical Development with Abnormal Glioneuronal Proliferation. Epilepsia, 2008, 49, 8-21.	5.1	155
11	Kainate Seizures Cause Acute Dendritic Injury and Actin Depolymerization (i>In Vivo (i>). Journal of Neuroscience, 2007, 27, 11604-11613.	3.6	153
12	Mammalian Target of Rapamycin (mTOR) Pathways in Neurological Diseases. Biomedical Journal, 2013, 36, 40.	3.1	141
13	Rapamycin Attenuates the Development of Posttraumatic Epilepsy in a Mouse Model of Traumatic Brain Injury. PLoS ONE, 2013, 8, e64078.	2.5	141
14	Add-on Cannabidiol Treatment for Drug-Resistant Seizures in Tuberous Sclerosis Complex. JAMA Neurology, 2021, 78, 285.	9.0	139
15	CNS-directed AAV2-mediated gene therapy ameliorates functional deficits in a murine model of infantile neuronal ceroid lipofuscinosis. Molecular Therapy, 2006, 13, 538-547.	8.2	125
16	Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 2007, 28, 184-196.	4.4	116
17	Epileptogenesis and Reduced Inward Rectifier Potassium Current in Tuberous Sclerosis Complex-1-Deficient Astrocytes. Epilepsia, 2005, 46, 1871-1880.	5.1	113
18	Infantile spasms. Pediatric Neurology, 2001, 24, 89-98.	2.1	107

#	Article	IF	CITATIONS
19	A critical review of mTOR inhibitors and epilepsy: from basic science to clinical trials. Expert Review of Neurotherapeutics, 2013, 13, 657-669.	2.8	103
20	Vigabatrin Inhibits Seizures and mTOR Pathway Activation in a Mouse Model of Tuberous Sclerosis Complex. PLoS ONE, 2013, 8, e57445.	2.5	86
21	mTOR Inhibition in Epilepsy: Rationale and Clinical Perspectives. CNS Drugs, 2015, 29, 91-99.	5.9	80
22	Impaired astrocytic gap junction coupling and potassium buffering in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 2009, 34, 291-299.	4.4	76
23	Pentylenetetrazoleâ€induced seizures cause acute, but not chronic, mTOR pathway activation in rat. Epilepsia, 2012, 53, 506-511.	5.1	76
24	Transient decrease in F-actin may be necessary for translocation of proteins into dendritic spines. European Journal of Neuroscience, 2005, 22, 2995-3005.	2.6	74
25	Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of Tuberous Sclerosis Complex. Neurobiology of Disease, 2010, 37, 764-771.	4.4	70
26	Modulation of dendritic spines in epilepsy: Cellular mechanisms and functional implications. Epilepsy and Behavior, 2005, 7, 569-577.	1.7	67
27	Therapeutic role of mammalian target of rapamycin (mTOR) inhibition in preventing epileptogenesis. Neuroscience Letters, 2011, 497, 231-239.	2.1	64
28	Tumor suppressor Tsc1 is a new Hsp90 coâ€chaperone that facilitates folding of kinase and nonâ€kinase clients. EMBO Journal, 2017, 36, 3650-3665.	7.8	64
29	Rapid Cooling Aborts Seizureâ€Like Activity in Rodent Hippocampalâ€Entorhinal Slices. Epilepsia, 2000, 41, 1241-1248.	5.1	63
30	Rapamycin prevents cerebral stroke by modulating apoptosis and autophagy in penumbra in rats. Annals of Clinical and Translational Neurology, 2018, 5, 138-146.	3.7	59
31	The Natural History and Treatment of Epilepsy in a Murine Model of Tuberous Sclerosis. Epilepsia, 2007, 48, 1470-1476.	5.1	58
32	Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy?. Epilepsia, 2020, 61, 359-386.	5.1	57
33	Short-term safety of mTOR inhibitors in infants and very young children with tuberous sclerosis complex (TSC): Multicentre clinical experience. European Journal of Paediatric Neurology, 2018, 22, 1066-1073.	1.6	54
34	Mammalian Target of Rapamycin (mTOR) Inhibition: Potential for Antiseizure, Antiepileptogenic, and Epileptostatic Therapy. Current Neurology and Neuroscience Reports, 2012, 12, 410-418.	4.2	50
35	In vivo imaging of dendritic spines during electrographic seizures. Annals of Neurology, 2005, 58, 888-898.	5.3	48
36	Inflammatory mechanisms contribute to the neurological manifestations of tuberous sclerosis complex. Neurobiology of Disease, 2015, 80, 70-79.	4.4	48

#	Article	IF	Citations
37	Adipose tissue NAD ⁺ biosynthesis is required for regulating adaptive thermogenesis and whole-body energy homeostasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23822-23828.	7.1	48
38	The mTOR pathway in treatment of epilepsy: a clinical update. Future Neurology, 2018, 13, 49-58.	0.5	47
39	Mammalian target of rapamycin (mTOR) activation in focal cortical dysplasia and related focal cortical malformations. Experimental Neurology, 2013, 244, 22-26.	4.1	46
40	Developmental characteristics of epileptiform activity in immature rat neocortex: a comparison of four in vitro seizure models. Developmental Brain Research, 2001, 128, 113-120.	1.7	45
41	mTOR as a potential treatment target for epilepsy. Future Neurology, 2012, 7, 537-545.	0.5	44
42	Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference. Pediatric Neurology, 2016, 60, 1-12.	2.1	43
43	Intermittent dosing of rapamycin maintains antiepileptogenic effects in a mouse model of tuberous sclerosis complex. Epilepsia, 2015, 56, 1088-1097.	5.1	42
44	Everolimus dosing recommendations for <scp>tuberous sclerosis complexâ€"</scp> associated refractory seizures. Epilepsia, 2018, 59, 1188-1197.	5.1	41
45	An animal model of generalized nonconvulsive status epilepticus: immediate characteristics and long-term effects. Experimental Neurology, 2003, 183, 87-99.	4.1	40
46	Animal models of focal cortical dysplasia and tuberous sclerosis complex: Recent progress toward clinical applications. Epilepsia, 2009, 50, 34-44.	5.1	40
47	Tuberous sclerosis and epilepsy: Role of astrocytes. Glia, 2012, 60, 1244-1250.	4.9	40
48	Brief seizures cause dendritic injury. Neurobiology of Disease, 2012, 45, 348-355.	4.4	40
49	Longitudinal analysis of developmental changes in electroencephalography patterns and sleep-wake states of the neonatal mouse. PLoS ONE, 2018, 13, e0207031.	2.5	39
50	Genetic animal models of malformations of cortical development and epilepsy. Journal of Neuroscience Methods, 2016, 260, 73-82.	2.5	38
51	The role of glia in epilepsy, intellectual disability, and other neurodevelopmental disorders in tuberous sclerosis complex. Journal of Neurodevelopmental Disorders, 2019, 11, 30.	3.1	38
52	Analysis of Cerebrospinal Fluid Glial Fibrillary Acidic Protein after Seizures in Children. Epilepsia, 2003, 44, 1455-1458.	5.1	37
53	Microglial activation during epileptogenesis in a mouse model of tuberous sclerosis complex. Epilepsia, 2016, 57, 1317-1325.	5.1	37
54	Developing Antiepileptogenic Drugs for Acquired Epilepsy: Targeting the Mammalian Target of Rapamycin (mTOR) Pathway. Molecular and Cellular Pharmacology, 2009, 1, 124-129.	1.7	36

#	Article	IF	CITATIONS
55	Motor benefit from levodopa in spastic quadriplegic cerebral palsy. Annals of Neurology, 2000, 47, 662-665.	5.3	35
56	Enhanced Epidermal Growth Factor, Hepatocyte Growth Factor, and Vascular Endothelial Growth Factor Expression in Tuberous Sclerosis Complex. American Journal of Pathology, 2011, 178, 296-305.	3.8	34
57	Regulation of cell death and epileptogenesis by the mammalian target of rapamycin (mTOR): A double-edged sword?. Cell Cycle, 2010, 9, 2281-2285.	2.6	31
58	Predictors of Drug-Resistant Epilepsy in Tuberous Sclerosis Complex. Journal of Child Neurology, 2017, 32, 1092-1098.	1.4	31
59	Modifying genetic epilepsies – Results from studies on tuberous sclerosis complex. Neuropharmacology, 2020, 166, 107908.	4.1	31
60	The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia, 2018, 59, 1796-1806.	5.1	29
61	Cyclosporine Induces Epileptiform Activity in an In Vitro Seizure Model. Epilepsia, 2000, 41, 271-276.	5.1	27
62	Systemic disease manifestations associated with epilepsy in tuberous sclerosis complex. Epilepsia, 2016, 57, 1443-1449.	5.1	27
63	Stabilizing dendritic structure as a novel therapeutic approach for epilepsy. Expert Review of Neurotherapeutics, 2008, 8, 907-915.	2.8	25
64	In Vivo Two-Photon Imaging of Astrocytes in GFAP-GFP Transgenic Mice. PLoS ONE, 2017, 12, e0170005.	2.5	25
65	mTOR Inhibitors in Children: Current Indications and Future Directions in Neurology. Current Neurology and Neuroscience Reports, 2016, 16, 102.	4.2	24
66	Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an ageâ€dependent manner. Epilepsia, 2017, 58, 2053-2063.	5.1	24
67	Astrocyte deletion of $\hat{l}\pm 2$ -Na/K ATPase triggers episodic motor paralysis in mice via a metabolic pathway. Nature Communications, 2020, 11, 6164.	12.8	23
68	Rapamycin Attenuates Acute Seizure-induced Astrocyte Injury in Mice in Vivo. Scientific Reports, 2017, 7, 2867.	3.3	22
69	Linkage analysis of candidate myelin genes in familial multiple sclerosis. Neurogenetics, 1999, 2, 155-162.	1.4	21
70	Rapamycin for Treatment of Epilepsy: Antiseizure, Antiepileptogenic, Both, or Neither?. Epilepsy Currents, 2011, 11, 66-68.	0.8	21
71	Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex. Neurobiology of Disease, 2020, 134, 104615.	4.4	21
72	Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Research, 2007, 1143, 238-246.	2.2	20

#	Article	IF	CITATIONS
73	Rapamycin has paradoxical effects on S6 phosphorylation in rats with and without seizures. Epilepsia, 2012, 53, 2026-2033.	5.1	20
74	Effect of Chronic Administration of Low Dose Rapamycin on Development and Immunity in Young Rats. PLoS ONE, 2015, 10, e0135256.	2.5	20
75	Cerebrospinal Fluid Neuron-Specific Enolase Following Seizures in Children: Role of Etiology. Journal of Child Neurology, 2002, 17, 261-264.	1.4	19
76	Advances in the Pathophysiology of Developmental Epilepsies. Seminars in Pediatric Neurology, 2005, 12, 72-87.	2.0	19
77	Characterization of a Mouse Model of Börjeson-Forssman-Lehmann Syndrome. Cell Reports, 2018, 25, 1404-1414.e6.	6.4	19
78	Epilepsy treatment patterns among patients with tuberous sclerosis complex. Journal of the Neurological Sciences, 2018, 391, 104-108.	0.6	19
79	Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity. Oncotarget, 2019, 10, 5824-5834.	1.8	18
80	Targeting the Mammalian Target of Rapamycin for Epileptic Encephalopathies and Malformations of Cortical Development. Journal of Child Neurology, 2018, 33, 55-63.	1.4	17
81	Cleaning up Epilepsy and Neurodegeneration: The Role of Autophagy in Epileptogenesis. Epilepsy Currents, 2013, 13, 177-178.	0.8	16
82	Epilepsy is both a symptom and a disease: A proposal for a two-tiered classification system. Epilepsia, 2011, 52, 1201-1203.	5.1	13
83	Brain stimulation treatments in epilepsy: Basic mechanisms and clinical advances. Biomedical Journal, 2022, 45, 27-37.	3.1	13
84	2014 Epilepsy Benchmarks Area II: Prevent Epilepsy and Its Progression. Epilepsy Currents, 2016, 16, 187-191.	0.8	11
85	Neurofibromatosis type 1 (<i>Nf1</i>)â€mutant mice exhibit increased sleep fragmentation. Journal of Sleep Research, 2019, 28, e12816.	3.2	11
86	Upregulation of the pathogenic transcription factor SPI1/PU.1 in tuberous sclerosis complex and focal cortical dysplasia by oxidative stress. Brain Pathology, 2021, 31, e12949.	4.1	11
87	Tuberous sclerosis complex as a model disease for developing new therapeutics for epilepsy. Expert Review of Neurotherapeutics, 2016, 16, 437-447.	2.8	10
88	Early developmental electroencephalography abnormalities, neonatal seizures, and induced spasms in a mouse model of tuberous sclerosis complex. Epilepsia, 2020, 61, 879-891.	5.1	10
89	Video-EEG Monitoring Methods for Characterizing Rodent Models of Tuberous Sclerosis and Epilepsy. Methods in Molecular Biology, 2012, 821, 373-391.	0.9	10
90	Inhibition of MEK-ERK signaling reduces seizures in two mouse models of tuberous sclerosis complex. Epilepsy Research, 2022, 181, 106890.	1.6	10

#	Article	IF	Citations
91	The Utility of Tuberless Models of Tuberous Sclerosis. Epilepsia, 2007, 48, 1629-1630.	5.1	8
92	Rapamycin prevents acute dendritic injury following seizures. Annals of Clinical and Translational Neurology, 2016, 3, 180-190.	3.7	8
93	mTOR and epileptogenesis in developmental brain malformations. Epilepsia, 2010, 51, 72-72.	5.1	7
94	mTOR Strikes Again: Mtorc1 Activation Causes Epilepsy Independent of Overt Pathological Changes. Epilepsy Currents, 2014, 14, 41-43.	0.8	6
95	Cerebral aquaporin-4 expression is independent of seizures in tuberous sclerosis complex. Neurobiology of Disease, 2019, 129, 93-101.	4.4	5
96	Clinical Neurogenetics. Neurologic Clinics, 2013, 31, 891-913.	1.8	4
97	Mild chronic perturbation of inhibition severely alters hippocampal function. Scientific Reports, 2019, 9, 16431.	3.3	4
98	Tuber-Less Models of Tuberous Sclerosis Still Provide Insights into Epilepsy. Epilepsy Currents, 2015, 15, 129-130.	0.8	2
99	Commentary: mTOR inhibition suppresses established epilepsy in a mouse model of cortical dysplasia. Epilepsia, 2016, 57, 1349-1350.	5.1	1
100	Tuberous Sclerosis and Other mTORopathies. , 2017, , 797-810.		1
101	"TOR―ing down the Dentate Gate in Temporal Lobe Epilepsy. Epilepsy Currents, 2013, 13, 260-261.	0.8	0
102	Illuminating Seizures: Combined Optical and Electrophysiological Recording Techniques Provide Novel Insights Into Seizure Dynamics. Epilepsy Currents, 2022, 22, 153575972110536.	0.8	0
103	Pathophysiology of Developmental Epilepsies. , 2010, , 103-119.		0
104	mTORopathies as Signaling Pathway Disorders in Developmental Epilepsies. , 2019, , 327-347.		0
105	Commentary on "The epileptogenic zone in children with tuberous sclerosis complex is characterized by prominent features of focal cortical dysplasia― Epilepsia Open, 2022, , .	2.4	0