Miquel Esteban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4212174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. TrAC - Trends in Analytical Chemistry, 2021, 139, 116249.	11.4	25
2	Chemometrics in Electrochemistry. , 2020, , 1-31.		2
3	MCR-ALS of voltammetric data for the study of environmentally relevant substances. Microchemical Journal, 2020, 158, 105177.	4.5	7
4	Electroanalysis from the past to the twenty-first century: challenges and perspectives. Journal of Solid State Electrochemistry, 2020, 24, 2653-2661.	2.5	17
5	Multivariate Calibration. Monographs in Electrochemistry, 2019, , 87-129.	0.2	0
6	Chemometrics in Electroanalysis. Monographs in Electrochemistry, 2019, , .	0.2	11
7	Expanding the possibilities of electrografting modification of voltammetric sensors through two complementary strategies. Electrochimica Acta, 2019, 319, 878-884.	5.2	9
8	Voltammetric Electronic Tongues in Food Analysis. Sensors, 2019, 19, 4261.	3.8	28
9	Dimethylglyoxime modified screen-printed electrodes for nickel determination. Journal of Electroanalytical Chemistry, 2019, 839, 83-89.	3.8	17
10	A new multivariate standard addition strategy for stripping voltammetric electronic tongues: Application to the determination of Tl(I) and In(III) in samples with complex matrices. Talanta, 2019, 192, 147-153.	5.5	8
11	Main Characteristics and Types of Electroanalytical Data. Monographs in Electrochemistry, 2019, , 7-31.	0.2	1
12	Multivariate Curve Resolution. Monographs in Electrochemistry, 2019, , 131-183.	0.2	1
13	Potentiometric Stripping Analysis. , 2018, , 230-230.		1
14	Determination of HPLC-UV Fingerprints of Spanish Paprika (Capsicum annuum L.) for Its Classification by Linear Discriminant Analysis. Sensors, 2018, 18, 4479.	3.8	20
15	Screenâ€printed Electrodes for the Determination of Iridium in Drugs. Electroanalysis, 2018, 30, 2925-2930.	2.9	0
16	Multivariate standard addition for the analysis of overlapping voltammetric signals in the presence of matrix effects: Application to the simultaneous determination of hydroquinone and catechol. Chemometrics and Intelligent Laboratory Systems, 2018, 178, 32-38.	3.5	10
17	Simultaneous determination of Tl(I) and In(III) using a voltammetric sensor array. Sensors and Actuators B: Chemical, 2017, 245, 18-24.	7.8	29
18	Phytochelatin synthesis in response to Hg uptake in aquatic plants near a chlor-alkali factory. Chemosphere, 2017, 176, 74-80.	8.2	17

#	Article	lF	CITATIONS
19	Determination of Pd(II) using an antimony film coated on a screen-printed electrode by adsorptive stripping voltammetry. Talanta, 2017, 167, 1-7.	5.5	18
20	A screen-printed voltammetric electronic tongue for the analysis of complex mixtures of metal ions. Sensors and Actuators B: Chemical, 2017, 250, 393-401.	7.8	45
21	A Voltammetric Electronic Tongue Based on Commercial Screenâ€printed Electrodes for the Analysis of Aminothiols by Differential Pulse Voltammetry. Electroanalysis, 2017, 29, 1559-1565.	2.9	8
22	Selenocystine modified screen-printed electrode as an alternative sensor for the voltammetric determination of metal ions. Talanta, 2017, 175, 501-506.	5.5	21
23	Voltammetric determination of metal ions beyond mercury electrodes. A review. Analytica Chimica Acta, 2017, 990, 11-53.	5.4	131
24	Selenocystine Modified Screen-Printed Carbon Electrode as an Alternative Sensor for the Voltammetric Determination of Metal Ions. Proceedings (mdpi), 2017, 1, .	0.2	0
25	Ag Nanoparticles Drop-Casting Modification of Screen-Printed Electrodes for the Simultaneous Voltammetric Determination of Cu(II) and Pb(II). Sensors, 2017, 17, 1458.	3.8	44
26	A Chemically-Bound Glutathione Sensor Bioinspired by the Defense of Organisms against Heavy Metal Contamination: Optimization of the Immobilization Conditions. Chemosensors, 2017, 5, 12.	3.6	6
27	Voltammetric Determination of Anti-Hypertensive Drug Hydrochlorothiazide Using Screen-Printed Electrodes Modified with L-Glutamic Acid. Chemosensors, 2017, 5, 25.	3.6	9
28	Simultaneous determination of hydroquinone, catechol and resorcinol by voltammetry using graphene screen-printed electrodes and partial least squares calibration. Talanta, 2016, 160, 138-143.	5.5	62
29	Integration of Commercial Screenâ€printed Electrodes into a Voltammetric Electronic Tongue for the Analysis of Aminothiols. Electroanalysis, 2016, 28, 1570-1577.	2.9	7
30	Glutathione modified screen-printed carbon nanofiber electrode for the voltammetric determination of metal ions in natural samples. Talanta, 2016, 155, 8-13.	5.5	64
31	Determination of Sb(III) using an ex-situ bismuth screen-printed carbon electrode by adsorptive stripping voltammetry. Talanta, 2016, 155, 21-27.	5.5	33
32	<i>Exâ€situ</i> Antimony Screenâ€printed Carbon Electrode for Voltammetric Determination of Ni(II)â€ions in Wastewater. Electroanalysis, 2016, 28, 640-644.	2.9	19
33	Antimony- based electrodes for analytical determinations. TrAC - Trends in Analytical Chemistry, 2016, 77, 203-213.	11.4	84
34	Parametric signal fitting of highly asymmetric voltammograms by using the exponentially modified Gaussian (EMG) function. Chemometrics and Intelligent Laboratory Systems, 2016, 152, 80-87.	3.5	9
35	New approaches to antimony film screen-printed electrodes using carbon-based nanomaterials substrates. Analytica Chimica Acta, 2016, 916, 17-23.	5.4	66
36	Mercury Films on Commercial Carbon Screenâ€Printed Devices for the Analysis of Heavy Metal Ions: a Critical Evaluation. Electroanalysis, 2015, 27, 1345-1349.	2.9	5

#	Article	IF	CITATIONS
37	Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples. Talanta, 2015, 144, 569-573.	5.5	38
38	Carbon nanotubes and graphene modified screen-printed carbon electrodes as sensitive sensors for the determination of phytochelatins in plants using liquid chromatography with amperometric detection. Journal of Chromatography A, 2015, 1409, 210-217.	3.7	21
39	Recent contributions to the study of phytochelatins with an analytical approach. TrAC - Trends in Analytical Chemistry, 2015, 73, 129-145.	11.4	23
40	Antimony film screen-printed carbon electrode for stripping analysis of Cd(II), Pb(II), and Cu(II) in natural samples. Analytica Chimica Acta, 2015, 855, 34-40.	5.4	95
41	Study of the Complexation of Pb(II) with <i>meso</i> â€2,3―Dimercaptosuccinic Acid (DMSA) and 2,3â€Dimercaptoâ€1â€propanesulfonic acid (DMPS) Using a Bismuthâ€Bulk Rotating Disk Electrode. Electroanalysis, 2014, 26, 1912-1919.	2.9	6
42	Commercial Screenâ€Printed Gold Electrodes for the Detection and Quantification of Aminothiols in Human Plasma by Liquid Chromatography with Electrochemical Detection. Electroanalysis, 2014, 26, 581-587.	2.9	14
43	Chemometrics applied to the analysis of induced phytochelatins in Hordeum vulgare plants stressed with various toxic non-essential metals and metalloids. Talanta, 2014, 118, 201-209.	5.5	27
44	Sputtered bismuth screen-printed electrode: A promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater. Talanta, 2014, 119, 348-352.	5.5	51
45	Analysis of phytochelatins and Hg-phytochelatin complexes in <i>Hordeum vulgare</i> plants stressed with Hg and Cd: HPLC study with amperometric detection. International Journal of Environmental Analytical Chemistry, 2014, 94, 668-678.	3.3	19
46	Voltammetric Determination of Pb(II) and Cd(II) Ions in Well Water Using a Sputtered Bismuth Screenâ€Printed Electrode. Electroanalysis, 2014, 26, 2168-2172.	2.9	15
47	Evaluation of Mercury Stress in Plants from the Almadén Mining District by Analysis of Phytochelatins and Their Hg Complexes. Environmental Science & Technology, 2014, 48, 6256-6263.	10.0	49
48	Substitution of Mercury Electrodes by Bismuth-Coated Screen-Printed Electrodes in the Determination of Quinine in Tonic Water. Journal of Chemical Education, 2013, 90, 1681-1684.	2.3	12
49	Can bismuth film screen printed carbon electrodes be used to study complexation?. Talanta, 2013, 107, 356-360.	5.5	13
50	Three-dimensional voltammetry assisted by parametric signal fitting: A new perspective for the electrochemical evaluation of metal binding in the presence of electrodic adsorption. Analytica Chimica Acta, 2013, 777, 17-24.	5.4	3
51	Coating methods, modifiers and applications of bismuth screen-printed electrodes. TrAC - Trends in Analytical Chemistry, 2013, 46, 15-29.	11.4	111
52	Parametric Signal Fitting by Gaussian Peak Adjustment: implementation of 2D transversal constraints and its application for the determination of pKa and complexation constants by differential pulse voltammetry. Analyst, The, 2013, 138, 2171.	3.5	9
53	Multivariate extension of classical equations for the study of electrochemically irreversible systems. Chemometrics and Intelligent Laboratory Systems, 2012, 119, 44-51.	3.5	1
54	Electroanalytical and isothermal calorimetric study of As(III) complexation by the metal poisoning remediators, 2,3-dimercapto-1-propanesulfonate and meso-2,3-dimercaptosuccinic acid. Analytica Chimica Acta, 2012, 746, 47-52.	5.4	12

#	Article	IF	CITATIONS
55	Chemometric Analysis of Voltammetric Data on Metal Ion Binding by Selenocystine. Journal of Physical Chemistry A, 2012, 116, 6526-6531.	2.5	2
56	Application of different chemometric strategies to voltammetric and UV-vis spectroscopic data to obtain a complexation model: study of the Cu(ii) binding with the phytohormone 6-benzylaminopurine. Analyst, The, 2012, 137, 5420.	3.5	4
57	Voltammetric Analysis of Phytochelatin Complexation in Ternary Metal Mixtures Supported by Multivariate Analysis and ESIâ€MS. Electroanalysis, 2012, 24, 309-315.	2.9	8
58	Combination of chemometrically assisted voltammetry, calorimetry, and circular dichroism as a new method for the study of bioinorganic substances: application to selenocystine metal complexes. Journal of Biological Inorganic Chemistry, 2012, 17, 321-329.	2.6	6
59	Asymmetric logistic peak as a suitable function for the resolution of highly asymmetric voltammograms in non-bilinear systems. Analyst, The, 2011, 136, 4696.	3.5	19
60	From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments. Metallomics, 2011, 3, 838.	2.4	18
61	Development and Possibilities of Multichannel Voltammetric Detection in Liquid Chromatography. Electroanalysis, 2011, 23, 140-146.	2.9	2
62	Parametric signal fitting by gaussian peak adjustment: A new multivariate curve resolution method for non-bilinear voltammetric measurements. Analytica Chimica Acta, 2011, 689, 198-205.	5.4	30
63	Characterization of Hg(II) binding with different length phytochelatins using liquid chromatography and amperometric detection. Analytica Chimica Acta, 2011, 695, 51-57.	5.4	13
64	Electroanalysis of the binding and adsorption of Hg2+ with seleno aminoacids by differential pulse and elimination voltammetry at the Au-disk electrode. Electrochimica Acta, 2011, 56, 5988-5992.	5.2	9
65	Optimization of experimental parameters in the determination of zinc in sea water by adsorptive stripping voltammetry. Journal of the Brazilian Chemical Society, 2010, 21, 255-261.	0.6	8
66	Stripping analysis of heavy metals in tap water using the bismuth film electrode. Analytical and Bioanalytical Chemistry, 2010, 396, 1365-1369.	3.7	42
67	Binding of Hg2+ by Cys, Cys-Gly and reduced glutathione: Study by differential pulse voltammetry on rotating Au-disk electrode, electrospray ionization mass-spectrometry and isothermal titration calorimetry. Journal of Electroanalytical Chemistry, 2010, 644, 20-24.	3.8	21
68	Ex situ Deposited Bismuth Film on Screenâ€Printed Carbon Electrode: A Disposable Device for Stripping Voltammetry of Heavy Metal Ions. Electroanalysis, 2010, 22, 1460-1467.	2.9	46
69	Complexation of Hg ²⁺ with αâ€Lipoic and Dihydrolipoic Acids: Study by Differential Pulse Voltammetry on Rotating Auâ€Disk Electrode and ESIâ€MS. Electroanalysis, 2010, 22, 177-184.	2.9	11
70	Electrochemical survey of the chain length influence in phytochelatins competitive binding by cadmium. Analytical Biochemistry, 2010, 406, 61-69.	2.4	21
71	Circular Dichroism and Voltammetry, Assisted by Multivariate Curve Resolution, and Mass Spectrometry of the Competitive Metal Binding by Phytochelatin PC ₅ . Analytical Chemistry, 2010, 82, 9006-9013.	6.5	29
72	Non-linear multivariate curve resolution analysis of voltammetric pH titrations. Analyst, The, 2010, 135, 1653.	3.5	29

#	Article	IF	CITATIONS
73	Cadmium binding in mixtures of phytochelatins and their fragments: A voltammetric study assisted by multivariate curve resolution and mass spectrometry. Analyst, The, 2010, 135, 86-95.	3.5	21
74	Bismuth Film Electrode in Metal Complexation Studies: Stripping Analysis of the Pb(II)â€, Cd(II)â€, and Zn(II)â€Binding with Phthalate. Electroanalysis, 2009, 21, 431-438.	2.9	16
75	Use of rotating Au-thin film electrode for the differential pulse voltammetric study of Hg2+ complexation. Journal of Electroanalytical Chemistry, 2009, 635, 58-62.	3.8	3
76	Competitive binding of cadmium by plant thiols: an electrochemical study assisted by multivariate curve resolution. Analytical and Bioanalytical Chemistry, 2009, 394, 1137-1145.	3.7	11
77	A novel differential pulse voltammetric method on rotating Au-disk electrode for the study of Hg2+ binding. Journal of Electroanalytical Chemistry, 2009, 629, 169-179.	3.8	17
78	Liquid chromatographic analysis of Hg(II) binding by thiol-rich peptides using both UV–vis and electrochemical detection. Journal of Chromatography A, 2009, 1216, 6752-6757.	3.7	17
79	Study of the Hg2+ binding with chelation therapy agents by differential pulse voltammetry on rotating Au-disk electrode and electrospray ionization mass-spectrometry. Analytica Chimica Acta, 2009, 653, 77-85.	5.4	24
80	Binding of Hg ²⁺ with Phytochelatins: Study by Differential Pulse Voltammetry on Rotating Au-Disk Electrode, Electrospray Ionization Mass-Spectrometry, and Isothermal Titration Calorimetry. Environmental Science & Technology, 2009, 43, 7010-7015.	10.0	27
81	Bismuth film electrodes for the study of metal thiolate complexation: An alternative to mercury electrodes. Talanta, 2009, 78, 1017-1022.	5.5	26
82	Chemometrics in Electrochemistry. , 2009, , 425-458.		10
83	Alternating current anodic stripping voltammetry in the study of cadmium complexation by a reference Suwannee river fulvic acid: a model case with strong electrode adsorption and weak binding. Analytical and Bioanalytical Chemistry, 2008, 390, 769-776.	3.7	1
84	Comparison of differential pulse and alternating current polarography in the soft-modelling study of the complexation of Cd(II) by the fragment Cys-Gly and by the phytochelatin (γ-Glu-Cys)2Gly. Analytical and Bioanalytical Chemistry, 2008, 391, 2209-2218.	3.7	3
85	Suitability of gold-array ultramicroelectrodes for electrochemical detection in flow systems. Sensors and Actuators B: Chemical, 2008, 135, 381-387.	7.8	4
86	Multivariate curve resolution as a tool to minimize the effects of electrodic adsorption in normal pulse voltammetry. Electrochimica Acta, 2008, 53, 5579-5586.	5.2	10
87	Signal splitting in the stripping analysis of heavy metals using bismuth film electrodes: Influence of concentration range and deposition parameters. Electrochimica Acta, 2008, 53, 6616-6622.	5.2	22
88	Thermodynamics of Cd2+ and Zn2+ binding by the phytochelatin (γ-Glu-Cys)4-Gly and its precursor glutathione. Analytical Biochemistry, 2008, 375, 82-89.	2.4	41
89	Possibilities of multivariate curve resolution and partial least squares in the resolution of coeluted peaks in liquid chromatography with electrochemical detection. Chemometrics and Intelligent Laboratory Systems, 2008, 93, 49-57.	3.5	9
90	Combined use of the potential shift correction and the simultaneous treatment of spectroscopic and electrochemical data by multivariate curve resolution: analysis of a Pb(ii)–phytochelatin system. Analyst, The, 2008, 133, 470.	3.5	34

#	Article	IF	CITATIONS
91	Potential shift correction in multivariate curve resolution of voltammetric data. General formulation and application to some experimental systems. Analyst, The, 2008, 133, 112-125.	3.5	38
92	Competitive Binding of Cd and Zn with the Phytochelatin (γ-Glu-Cys) ₄ -Gly: Comparative Study by Mass Spectrometry, Voltammetry-Multivariate Curve Resolution, and Isothermal Titration Calorimetry. Environmental Science & Technology, 2008, 42, 2860-2866.	10.0	38
93	Soft modelling for the resolution of highly overlapped voltammetric peaks: application to some Pb-phytochelatin systems. Talanta, 2007, 71, 344-352.	5.5	24
94	Determination of complex formation constants by phase sensitive alternating current polarography: Cadmium–polymethacrylic acid and cadmium–polygalacturonic acid. Talanta, 2007, 73, 776-782.	5.5	8
95	Chronoamperometric and Voltammetric Characterization of Gold Ultramicroelectrode Arrays. Electroanalysis, 2007, 19, 429-435.	2.9	8
96	Binding of Cd2+ and Zn2+ with the Phytochelatin (γ-Glu-Cys)4-Gly: A Voltammetric Study Assisted by Multivariate Curve Resolution and Electrospray Ionization Mass Spectrometry. Electroanalysis, 2007, 19, 310-317.	2.9	30
97	Stripping Chronopotentiometry in Environmental Analysis. Electroanalysis, 2007, 19, 2039-2049.	2.9	36
98	Multivariate curve resolution applied to the simultaneous analysis of electrochemical and spectroscopic data: Study of the Cd(II)/glutathione-fragment system by voltammetry and circular dichroism spectroscopy. Analytica Chimica Acta, 2007, 584, 403-409.	5.4	33
99	Full-wave analysis of stripping chronopotentiograms at scanned deposition potential (SSCP) as a tool for heavy metal speciation: Theoretical development and application to Cd(II)-phthalate and Cd(II)-iodide systems. Journal of Electroanalytical Chemistry, 2007, 600, 275-284.	3.8	25
100	Chemometrics in Electroanalytical Chemistry. Critical Reviews in Analytical Chemistry, 2006, 36, 295-313.	3.5	44
101	Identification of heavy metal complexes of a hexapeptide inhibitor of the human immunodeficiency virus integrase protein by using a voltammetric approach. Analytical Biochemistry, 2006, 348, 252-258.	2.4	3
102	Chemometrics for the analysis of voltammetric data. TrAC - Trends in Analytical Chemistry, 2006, 25, 86-92.	11.4	129
103	Stripping Chronopotentiometry and Stripping Voltammetry of Mixtures of Heavy Metal Ions Producing Close Signals: The Cd(II)-Pb(II)-Phthalate System. Electroanalysis, 2006, 18, 955-964.	2.9	4
104	Minimization of Electrode Adsorption Effects: The Cadmium–Humic Acid System Studied by Phase Sensitive Alternating Current Polarography. Electroanalysis, 2006, 18, 1215-1222.	2.9	5
105	Phase Sensitive Alternating Current Polarography: A Chemometric Approach for the Selection of Phase Angles. Electroanalysis, 2006, 18, 2405-2412.	2.9	7
106	Comparison of voltammetric detection assisted by multivariate curve resolution with amperometric detection in liquid chromatographic analysis of cysteine-containing compounds. Journal of Chromatography A, 2005, 1062, 95-101.	3.7	22
107	Suitability of Stripping Chronopotentiometry for Heavy Metal Speciation Using Hydrogen Peroxide as Oxidant: Application to the Cd(II)-EDTA-PMA System. Electroanalysis, 2005, 17, 2201-2207.	2.9	1
108	Complexation of Heavy Metals by Phytochelatins:Â Voltammetric Study of the Binding of Cd2+and Zn2+lons by the Phytochelatin (γ-Glu-Cys)3Gly Assisted by Multivariate Curve Resolution. Environmental Science & Technology, 2005, 39, 778-786.	10.0	45

#	Article	IF	CITATIONS
109	Multivariate Resolution of Coeluted Peaks in Hyphenated Liquid Chromatography - Linear Sweep Voltammetry. Electroanalysis, 2003, 15, 499-508.	2.9	25
110	Differential Pulse Polarography of the Zn2+ Complexation by Glutathione Fragments Cys-Gly and gamma-Glu-Cys. Electroanalysis, 2003, 15, 1177-1184.	2.9	9
111	Comparison of constant-current stripping chronopotentiometry and anodic stripping voltammetry in metal speciation studies using mercury drop and film electrodes. Journal of Electroanalytical Chemistry, 2003, 560, 105-116.	3.8	28
112	Voltammetry Assisted by Multivariate Analysis as a Tool for Speciation of Metallothioneins:Â Competitive Complexation of α- and β-Metallothionein Domains with Cadmium and Zinc. Environmental Science & Technology, 2003, 37, 5609-5616.	10.0	49
113	Study of Cd2+ complexation by the glutathione fragments Cys–Gly (CG) and γ-Glu–Cys (γ-EC) by differential pulse polarography. Analyst, The, 2002, 127, 401.	3.5	21
114	Combined Use of Differential Pulse Polarography and Multivariate Curve Resolution: As Applied to the Study of Metal Mixed Complexes of the Metallothionein Related Hexapeptide. Electroanalysis, 2002, 14, 50-56.	2.9	10
115	Comparison of Voltammetry Assisted by Multivariate Analysis with EXAFS as Applied to the Study of Cd- and Zn-Binding of Metallothionein Related Peptides. Electroanalysis, 2002, 14, 899.	2.9	14
116	Application of multivariate curve resolution to the voltammetric study of the complexation of fulvic acids with cadmium(II) ion. Analytica Chimica Acta, 2002, 459, 291-304.	5.4	21
117	Differential pulse voltammetric study of the complexation of Cd(II) by the phytochelatin (γ-Gluî—,Cys)2Gly assisted by multivariate curve resolution. Journal of Electroanalytical Chemistry, 2002, 520, 111-118.	3.8	57
118	Comparison of the zinc–cadmium exchange properties of the metallothionein related peptide {Lys–Cys–Thr–Cys–Cys–Ala} and a zinc-containing metallothionein: study by voltammetry and multivariate curve resolution. Journal of Electroanalytical Chemistry, 2002, 523, 114-125.	3.8	16
119	Implementation of a chemical equilibrium constraint in the multivariate curve resolution of voltammograms from systems with successive metal complexes. Analyst, The, 2001, 126, 371-377.	3.5	32
120	Voltammetric Analysis of Heterogeneity in Metal Ion Binding by Humics. Environmental Science & Technology, 2001, 35, 1097-1102.	10.0	30
121	Voltammetric Soft Modelling Approach for Systems with Both Electrochemically Labile and Inert Complexes: the Zn-Glycine Case. Electroanalysis, 2001, 13, 1405-1410.	2.9	14
122	Square wave voltammetry data analysis by multivariate curve resolution: application to the mixed-metal system Cd–Zn–{Lys–Cys–Thr–Cys–Cys–Ala}. Analytica Chimica Acta, 2001, 428, 285	5-299.	19
123	Soft modelling approach applied to voltammetric data: study of electrochemically labile metal–glycine complexes. Journal of Electroanalytical Chemistry, 2001, 505, 44-53.	3.8	25
124	Differential pulse polarographic study of the Pb(II) complexation by glutathione. Journal of Electroanalytical Chemistry, 2001, 516, 110-118.	3.8	39
125	Heterogeneity of Cd(II)-Macromolecule Systems: A Potentiometric Study. Electroanalysis, 2000, 12, 60-65.	2.9	6
126	Soft- and Hard-Modeling Approaches for the Determination of Stability Constants of Metal–Peptide Systems by Voltammetry. Analytical Biochemistry, 2000, 279, 189-201.	2.4	41

#	Article	IF	CITATIONS
127	Heavy Metal Binding by Tannic Acid: A Voltammetric Study. Electroanalysis, 2000, 12, 1130-1137.	2.9	55
128	Multivariate curve resolution of polarographic data applied to the study of the copper-binding ability of tannic acid. Analytica Chimica Acta, 2000, 424, 203-209.	5.4	32
129	Multivariate curve resolution with alternating least squares optimisation: a soft-modelling approach to metal complexation studies by voltammetric techniques. TrAC - Trends in Analytical Chemistry, 2000, 19, 49-61.	11.4	145
130	Application of electroanalytical methods to the characterization of metallothioneins and related molecules. Cellular and Molecular Biology, 2000, 46, 237-56.	0.9	11
131	Voltammetric metal speciation in mixtures of inert and labile macromolecular complexes at any ligand-to-metal ratio: differential pulse polarographic study of the Zn(II)–nitrilotriacetate–polymethacrylate system. Journal of Electroanalytical Chemistry, 1999, 462, 157-173.	3.8	6
132	Cadmium binding properties of the C-terminal hexapeptide from mouse metallothionein: study by linear sweep voltammetry and multivariate curve resolution analysis. Journal of Electroanalytical Chemistry, 1999, 468, 202-212.	3.8	26
133	Voltammetry of sparingly soluble metal complexes: a differential pulse polarographic study of the Zn(II)+oxalate system. Journal of Electroanalytical Chemistry, 1999, 475, 99-106.	3.8	15
134	Zinc-binding properties of the C-terminal hexapeptide Lys–Cys–Thr–Cys–Cys–Ala from mouse metallothionein: analysis by differential pulse polarography and multivariate curve resolution. Analytica Chimica Acta, 1999, 385, 353-363.	5.4	17
135	Optimisation of resolution function in signals ratio method and deconvolution by polynomial division – quantitation of Cd(II) and In(III) from their global signals obtained at carbon fibre disk ultramicroelectrode. Analytica Chimica Acta, 1999, 382, 105-115.	5.4	6
136	Complexation of cadmium by the C-terminal hexapeptide Lys-Cys-Thr-Cys-Cys-Ala from mouse metallothionein: study by differential pulse polarography and circular dichroism spectroscopy with multivariate curve resolution analysis. Analytica Chimica Acta, 1999, 390, 15-25.	5.4	27
137	Three-Dimensional Voltammetric Study on the Applicability of Leden Functions to the Analysis of Nonlabile Complexes: The Cd(II)-NTA System. Electroanalysis, 1999, 11, 93-100.	2.9	8
138	Multivariate Curve Resolution of Cyclic Voltammetric Data:  Application to the Study of the Cadmium-Binding Properties of Glutathione. Analytical Chemistry, 1999, 71, 4629-4636.	6.5	53
139	Metal complexation model identification and the detection and elimination of erroneous points using evolving least-squares fitting of voltammetric data. Analytica Chimica Acta, 1998, 363, 261-278.	5.4	3
140	Multivariate curve resolution analysis of voltammetric data obtained at different time windows: study of the system Cd2+–nitrilotriacetic acid. Analytica Chimica Acta, 1998, 371, 23-37.	5.4	25
141	Anodic Stripping Voltammetry of Metal Ions in Mixtures of Ligands. Electroanalysis, 1998, 10, 417-422.	2.9	7
142	Amalgamation effects in reverse pulse polarography at spherical electrodes. Influence on speciation measurements. Journal of Electroanalytical Chemistry, 1998, 442, 151-167.	3.8	17
143	Voltammetry of metal ions in mixtures of ligands. Journal of Electroanalytical Chemistry, 1998, 453, 151-159.	3.8	8
144	Study of the zinc-binding properties of glutathione by differential pulse polarography and multivariate curve resolution. Journal of Inorganic Biochemistry, 1998, 70, 91-98.	3.5	58

#	Article	IF	CITATIONS
145	Multivariate Curve Resolution: A Possible Tool in the Detection of Intermediate Structures in Protein Folding. Biophysical Journal, 1998, 74, 2876-2888.	0.5	53
146	Voltammetry of metal ions in mixtures of ligands Part II: Application to successive labile complexes. Journal of Electroanalytical Chemistry, 1997, 432, 243-251.	3.8	15
147	Cadmium-binding properties of glutathione: A chemometrical analysis of voltammetric data. Journal of Inorganic Biochemistry, 1997, 66, 29-36.	3.5	77
148	Resolution of global signals using ratio differential pulse polarograms: Determination of p-nitroaniline and p-nitrotoluene in their mixture. Journal of Electroanalytical Chemistry, 1997, 420, 227-234.	3.8	17
149	Voltammetry of metal ions in mixtures of ligands Part I. Theoretical formulation and application to 1:1 labile complexes. Journal of Electroanalytical Chemistry, 1997, 431, 99-110.	3.8	15
150	Application of multivariate curve resolution to the voltammetric data Factor analysis ambiguities in the study of weak consecutive complexation of metal ion with ligand. Analytica Chimica Acta, 1997, 341, 105-120.	5.4	19
151	Determination of small amounts of analytes in the presence of a large excess of one analyte from multi-analyte global signals of differential-pulse voltammetry and related techniques with the signal ratio resolution method. Analyst, The, 1996, 121, 1845.	3.5	7
152	Evolving polynomial regression and error analysis in model identification and determination of consecutive stability constants using voltammetric methods. Analytica Chimica Acta, 1996, 325, 135-149.	5.4	3
153	Voltammetry of Mnll and Coll in the presence of polymethacrylate. Electroanalysis, 1996, 8, 460-464.	2.9	4
154	Application of Multivariate Curve Resolution to Voltammetric Data. Analytical Biochemistry, 1996, 240, 134-141.	2.4	74
155	Disposition of antimony after the administration of N-methylglucamine antimoniate to dogs. Veterinary Record, 1996, 138, 181-183.	0.3	29
156	Influence of adsorption on calibration curves in normal pulse polarography. Analytica Chimica Acta, 1995, 305, 273-284.	5.4	11
157	Voltammetry of Pb(II), Cd(II) and Zn(II) ions in the presence of the sulphated polysaccharide λ-carrageenan. Analytica Chimica Acta, 1995, 310, 121-129.	5.4	13
158	Signals ratio method for resolution enhancement in differential pulse polarography and related techniques. Analytica Chimica Acta, 1995, 312, 27-34.	5.4	16
159	Application of multivariate curve resolution to voltammetric data. Part 1. Study of Zn(II) complexation with some polyelectrolytes. Journal of Electroanalytical Chemistry, 1995, 393, 7-16.	3.8	59
160	Suitability of Polystyrene for Voltammetric Cells: A Differential Pulse Anodic Stripping Voltammetric Study. Analytical Chemistry, 1994, 66, 1548-1551.	6.5	12
161	Expert system for the voltammetric determination of trace metals. Analytica Chimica Acta, 1994, 285, 377-389.	5.4	13
162	Expert system for the voltammetric determination of trace metals. Analytica Chimica Acta, 1994, 285, 193-208.	5.4	25

#	Article	IF	CITATIONS
163	Voltammetry of macromolecular metal complexes involving a nonreversible process: The Ni(II)-polymethacrylate system. Electroanalysis, 1994, 6, 633-638.	2.9	1
164	Stripping electroanalytical techniques in environmental analysis. TrAC - Trends in Analytical Chemistry, 1994, 13, 110-117.	11.4	25
165	Voltammetry of labile metal-macromolecular systems for any ligand-to-metal ratio, including adsorption phenomena. The role of the stability constant. Journal of Electroanalytical Chemistry, 1994, 374, 223-234.	3.8	24
166	Reverse pulse polarography of labile metal + macromolecule systems with induced reactant adsorption: theoretical analysis and determination of complexation and adsorption parameters. Journal of Electroanalytical Chemistry, 1994, 375, 307-318.	3.8	33
167	Voltammetry of Cu(II) in the presence of polymethacrylate. Analytica Chimica Acta, 1993, 273, 289-296.	5.4	19
168	Semi-empirical full-wave expression for induced reactant adsorption in normal pulse polarography of labile metal—polyelectrolyte systems. Analytica Chimica Acta, 1993, 273, 297-304.	5.4	9
169	General voltammetric method for studying metal complexation in macromolecular systems. Analytica Chimica Acta, 1993, 281, 271-280.	5.4	3
170	Expert system for the voltammetric determination of trace metals. Analytica Chimica Acta, 1993, 284, 435-443.	5.4	11
171	Polarography and stripping voltammetry of metal-polycarboxylate complexes: The Cu(II)-polyacrylate system. Electroanalysis, 1993, 5, 677-684.	2.9	9
172	Voltammetry of metal ion—macromolecule interactions: Application to speciation problems. TrAC - Trends in Analytical Chemistry, 1993, 12, 276-286.	11.4	19
173	Polarography and differential pulse anodic stripping voltammetry of Pb(II)/polycarboxylate complexes. Journal of Electroanalytical Chemistry, 1993, 344, 119-134.	3.8	8
174	Voltammetry of labile metal—complex systems with induced reactant adsorption. Theoretical analysis for any ligand-to-metal ratio. Journal of Electroanalytical Chemistry, 1993, 360, 1-25.	3.8	17
175	Factors affecting the stability of ceftriaxone sodium in solution on storage. International Journal of Pharmaceutics, 1993, 92, 47-53.	5.2	6
176	Voltammetric study of some macromolecule ―metal complexes. Makromolekulare Chemie Macromolecular Symposia, 1992, 59, 297-312.	0.6	5
177	Stripping voltammetry of metal complexes: interferences from adsorption onto cell components. Analytical Chemistry, 1992, 64, 1769-1776.	6.5	58
178	Computer-aided voltammetric method development employing a knowledge-based expert system. TrAC - Trends in Analytical Chemistry, 1992, 11, 135-142.	11.4	8
179	Induced reactant adsorption in normal pulse polarography of labile metal + polyelectrolyte systems. Journal of Electroanalytical Chemistry, 1992, 328, 271-285.	3.8	19
180	Polarography and anodic stripping voltammetry of metal—polycarboxylate complexes: phenomenological relationship between limiting currents and hydrodynamic mass transport. Journal of Electroanalytical Chemistry, 1992, 333, 33-45.	3.8	25

#	Article	IF	CITATIONS
181	Induced reactant adsorption in normal pulse polarography of labile metal polyelectrolyte systems part 1. Study of current-potential relationship assuming potential-independent adsorption parameters. Journal of Electroanalytical Chemistry, 1992, 326, 299-316.	3.8	25
182	Influence of the counterion concentration on the formation constants of some metal/polycarboxylate complexes: Study by differential pulse anodic stripp. Biophysical Chemistry, 1992, 45, 109-117.	2.8	15
183	Induced reactant adsorption in metal—polyelectrolyte systems: pulse polarographic study. Analytica Chimica Acta, 1992, 268, 261-274.	5.4	43
184	Expert system for the voltammetric determination of trace metals. Analytica Chimica Acta, 1992, 268, 95-105.	5.4	26
185	Expert system for the voltammetric determination of trace metals. Analytica Chimica Acta, 1992, 268, 107-114.	5.4	17
186	Protolytic control in stripping voltammetric titrations of metal—polyacid complexes. Analytica Chimica Acta, 1992, 264, 163-175.	5.4	28
187	Voltammetric study of zinc(II) and lead(II) ions in the presence of alginate and pectin. Electroanalysis, 1992, 4, 757-764.	2.9	17
188	Polarography and stripping voltammetry of metal-polycarboxylate complexes: Complexes of cadmium and zinc with polyacrylic and polymethacrylic acids. Electroanalysis, 1991, 3, 299-307.	2.9	30
189	Voltammetric study of cadmium(II) ion in the presence of polysaccharides. Electroanalysis, 1991, 3, 309-318.	2.9	23
190	Analytical Determination of N-(2-Mercapto Propionyl)Glycine (Tiopronin) by Voltammetric Methods. Analytical Letters, 1991, 24, 1183-1199.	1.8	3
191	Cyclic voltammetry of metal/polyelectrolyte complexes: Complexes of cadmium and lead with deoxyribonucleic acid. Electroanalysis, 1990, 2, 35-41.	2.9	15
192	Direct-current, normal-pulse and reverse-pulse polarography of some heavy metal—polycarboxylate complexes. Analytica Chimica Acta, 1990, 229, 93-100.	5.4	33
193	Cathodic Stripping Voltammetric Study Of DL-N-Acetylhomocysteine Thiolactone (Citiolone). Analytical Letters, 1990, 23, 981-993.	1.8	1
194	Metal Speciation in Polyelectrolytic Systems by Differential Pulse Anodic Stripping Voltammetry. International Journal of Environmental Analytical Chemistry, 1990, 38, 75-83.	3.3	36
195	Polarographic behaviour of several amidoximes and their copper (II) and mercury (II) complexes. Electrochimica Acta, 1989, 34, 1433-1438.	5.2	0
196	Pulse polarographic study of the behaviour of some 0,0'-dihydroxyazo-compounds. Collection of Czechoslovak Chemical Communications, 1989, 54, 1219-1226.	1.0	3
197	Anodic behaviour of 2-mercaptoethanol at a mercury electrode. Analytica Chimica Acta, 1988, 206, 65-74.	5.4	11
198	Determination of stability constants from polarographic anodic signals for metal complexes with some s-containing ligands. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 241, 113-123.	0.1	2

#	Article	IF	CITATIONS
199	Anodic oxidation of mercury in the presence of thioether acids: ethane-1,2-bis-mercaptoacetic acid. Electrochimica Acta, 1987, 32, 67-69.	5.2	3
200	Anodic oxidation of mercury in the presence of thioether acids: Methane-1,1-bis-mercaptoacetic acid. Collection of Czechoslovak Chemical Communications, 1987, 52, 616-625.	1.0	3
201	Formation constants of some mercury(II) complexes determined from their anodic polarographic signals. Talanta, 1986, 33, 843-846.	5.5	6
202	Anodic oxidation of mercury in the presence of thioether acids—II. 2,2′-thiobisacetic acid and 3,3′-thiobispropanoic acid. Electrochimica Acta, 1986, 31, 327-334.	5.2	9
203	Anodic oxidation of mercury in the presence of thioether acids. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 213, 65-73.	0.1	4
204	Cathodic stripping voltammetry of thioether acids. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 215, 103-110.	0.1	1
205	Cathodic stripping voltammetry of 2-mercaptoethanol. Analytica Chimica Acta, 1985, 176, 113-119.	5.4	16
206	Polarographic determination of the stability constants of metal complexes based on the shifts in half-wave or peak potentials of the anodic oxidation of mercury: methylthioacetato- and 2,2′-thiobisacetato complexes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 194, 11-25.	0.1	9
207	Thermometric behaviour of (methylthio)acetic, thiodiacetic and 3,3'-thiodipropanoic acids. Thermochimica Acta, 1982, 55, 1-10.	2.7	13