Jan Beyersmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4212066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Statistical inference for state occupation and transition probabilities in non-Markov multi-state models subject to both random left-truncation and right-censoring. Econometrics and Statistics, 2023, 25, 110-124.	0.8	7
2	Longâ€Term Mortality of Patients With Osteoarthritis After Joint Replacement: Prognostic Value of Preoperative and Postoperative Pain and Function. Arthritis Care and Research, 2023, 75, 869-875.	3.4	3
3	Evolution of disability in spinocerebellar ataxias type 1, 2, 3, and 6. Annals of Clinical and Translational Neurology, 2022, 9, 286-295.	3.7	3
4	Survival analysis for AdVerse events with VarYing followâ€up times (SAVVY): Rationale and statistical concept of a metaâ€analytic study. Biometrical Journal, 2021, 63, 650-670.	1.0	16
5	Estimating and comparing adverse event probabilities in the presence of varying followâ€up times and competing events. Pharmaceutical Statistics, 2021, 20, 1125-1146.	1.3	12
6	Motor learning might contribute to a therapeutic anterior shift of the habitual mandibular position—An exploratory study. Journal of Oral Rehabilitation, 2021, 48, 891-900.	3.0	0
7	Survival analysis for AdVerse events with VarYing follow-up times (SAVVY)—estimation of adverse event risks. Trials, 2021, 22, 420.	1.6	12
8	Assessment of assumptions of statistical analysis methods in randomised clinical trials: the what and how. BMJ Evidence-Based Medicine, 2021, 26, 121-126.	3.5	23
9	Design aspects of COVIDâ€19 treatment trials: Improving probability and time of favorable events. Biometrical Journal, 2021, , .	1.0	6
10	Trueness of full-arch IO scans estimated based on 3D translational and rotational deviations of single teeth—an in vitro study. Clinical Oral Investigations, 2021, 26, 3273.	3.0	3
11	Psychosocial Risk and Health Behaviors as Predictors of Clinical Events in Patients Wait-Listed for a New Heart: Results from 7 Years of Follow-Up. Life, 2021, 11, 1438.	2.4	1
12	Subdistribution hazard models for competing risks in discrete time. Biostatistics, 2020, 21, 449-466.	1.5	26
13	Multistate modeling of clinical hold in randomized clinical trials. Pharmaceutical Statistics, 2020, 19, 262-275.	1.3	2
14	Estimating cumulative incidence functions in competing risks data with dependent leftâ€ŧruncation. Statistics in Medicine, 2020, 39, 481-493.	1.6	4
15	Five years' trajectories of functionality and pain in patients after hip or knee replacement and association with long-term patient survival. Scientific Reports, 2020, 10, 14388.	3.3	5
16	Statistical models for complex data in clinical and epidemiological research. Biometrical Journal, 2020, 62, 528-531.	1.0	0
17	Relapse- and Immunosuppression-Free Survival after Hematopoietic Stem Cell Transplantation: How Can We Assess Treatment Success for Complex Time-to-Event Endpoints?. Biology of Blood and Marrow Transplantation, 2020, 26, 992-997.	2.0	6
18	Stabilizing cumulative incidence estimation of pregnancy outcome with delayed entries. Biometrical Journal, 2019, 61, 1290-1302.	1.0	7

JAN BEYERSMANN

#	Article	IF	CITATIONS
19	The wild bootstrap for multivariate Nelson–Aalen estimators. Lifetime Data Analysis, 2019, 25, 97-127.	0.9	12
20	Exposure density sampling: Dynamic matching with respect to a timeâ€dependent exposure. Statistics in Medicine, 2019, 38, 4390-4403.	1.6	26
21	Joint modeling of progressionâ€free and overall survival and computation of correlation measures. Statistics in Medicine, 2019, 38, 4270-4289.	1.6	13
22	Association of acute kidney injury and bleeding events with mortality after radial or femoral access in patients with acute coronary syndrome undergoing invasive management: secondary analysis of a randomized clinical trial. European Heart Journal, 2019, 40, 1226-1232.	2.2	26
23	Bootstrapping complex timeâ€ŧoâ€event data without individual patient data, with a view toward timeâ€dependent exposures. Statistics in Medicine, 2019, 38, 3747-3763.	1.6	10
24	Multistate methodology improves risk assessment under timeâ€varying drug intake—a new view on pregnancy outcomes following coumarin exposure. Pharmacoepidemiology and Drug Safety, 2019, 28, 616-624.	1.9	7
25	Assessing assumptions for statistical analyses in randomised clinical trials. BMJ Evidence-Based Medicine, 2019, 24, 185-189.	3.5	23
26	On estimands and the analysis of adverse events in the presence of varying followâ€up times within the benefit assessment of therapies. Pharmaceutical Statistics, 2019, 18, 166-183.	1.3	38
27	Outcomes of Hypothermia in Addition to Decompressive Hemicraniectomy in Treatment of Malignant Middle Cerebral Artery Stroke. JAMA Neurology, 2019, 76, 571.	9.0	47
28	Bayesian Phase II optimization for time-to-event data based on historical information. Statistical Methods in Medical Research, 2019, 28, 1272-1289.	1.5	4
29	The Analysis of Adverse Events in Randomized Clinical Trials. , 2019, , 537-557.		3
30	A Wild Bootstrap Approach for the Aalen–Johansen Estimator. Biometrics, 2018, 74, 977-985.	1.4	22
31	A simulation approach for power calculation in large cohort studies based on multistate models. Biometrical Journal, 2018, 60, 671-686.	1.0	2
32	Assessing Noninferiority in Treatment Trials for Severe Infectious Diseases: an Extension to the Entire Follow-Up Period Using a Cure-Death Multistate Model. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	5
33	Prediction accuracy and variable selection for penalized causeâ€specific hazards models. Biometrical Journal, 2018, 60, 288-306.	1.0	7
34	Estimation of adjusted expected excess lengthâ€ofâ€stay associated with ventilationâ€acquired pneumonia in intensive care: A multistate approach accounting for timeâ€dependent mechanical ventilation. Biometrical Journal, 2018, 60, 1135-1150.	1.0	5
35	Long-term risk for end-stage kidney disease and death in a large population-based cohort. Scientific Reports, 2018, 8, 7729.	3.3	5
36	Optimizing the Design and Analysis of Clinical Trials for Antibacterials Against Multidrug-resistant Organisms: A White Paper From COMBACTE's STAT-Net. Clinical Infectious Diseases, 2018, 67, 1922-1931.	5.8	23

Jan Beyersmann

#	Article	IF	CITATIONS
37	Simulation shows undesirable results for competing risks analysis with time-dependent covariates for clinical outcomes. BMC Medical Research Methodology, 2018, 18, 79.	3.1	32
38	Competing-risk outcomes after hematopoietic stem cell transplantation from the perspective of time-dependent effects. Haematologica, 2018, 103, 1527-1534.	3.5	5
39	Florence Nightingale, William Farr and Competing Risks. Journal of the Royal Statistical Society Series A: Statistics in Society, 2017, 180, 285-293.	1.1	6
40	Determinants of weight change in patients on basal insulin treatment: an analysis of the DIVE registry. BMJ Open Diabetes Research and Care, 2017, 5, e000301.	2.8	10
41	Understanding Mortality of Femoral Fractures Following Low-Impact Trauma in Persons With and Without Care Need. Journal of the American Medical Directors Association, 2017, 18, 221-226.	2.5	7
42	Modelling two causeâ€specific hazards of competing risks in one cumulative proportional odds model?. Statistics in Medicine, 2017, 36, 4353-4363.	1.6	4
43	Time-to-event methodology improved statistical evaluation in register-based health services research. Journal of Clinical Epidemiology, 2017, 82, 103-111.	5.0	9
44	Diabetes Mellitus and Its Effects on All-Cause Mortality After Radiopeptide Therapy for Neuroendocrine Tumors. Journal of Nuclear Medicine, 2017, 58, 97-102.	5.0	7
45	The health and economic burden of bloodstream infections caused by antimicrobial-susceptible and non-susceptible Enterobacteriaceae and Staphylococcus aureus in European hospitals, 2010 and 2011: a multicentre retrospective cohort study. Eurosurveillance, 2016, 21, .	7.0	157
46	Estimating Infection Incidence in Longitudinal Studies. Infection Control and Hospital Epidemiology, 2016, 37, 617-617.	1.8	1
47	Adverse event development in clinical oncology trials. Lancet Oncology, The, 2016, 17, e263-e264.	10.7	3
48	Competing risk bias was common in a prominent medical journal. Journal of Clinical Epidemiology, 2016, 80, 135-136.	5.0	24
49	RE: "COMPARISON OF STATISTICAL APPROACHES FOR DEALING WITH IMMORTAL TIME BIAS IN DRUG EFFECTIVENESS STUDIES― American Journal of Epidemiology, 2016, 184, 856-858.	3.4	3
50	Metaâ€analysis for aggregated survival data with competing risks: a parametric approach using cumulative incidence functions. Research Synthesis Methods, 2016, 7, 282-293.	8.7	9
51	Statistical issues in the analysis of adverse events in timeâ€toâ€event data. Pharmaceutical Statistics, 2016, 15, 297-305.	1.3	47
52	The predictive distribution of the residual variability in the linearâ€fixed effects model for clinical crossâ€over trials. Biometrical Journal, 2016, 58, 797-809.	1.0	0
53	Treatment intensification using long-acting insulin –predictors of future basal insulin supported oral therapy in the DIVE registry. BMC Endocrine Disorders, 2015, 15, 54.	2.2	19
54	A competing risks approach for nonparametric estimation of transition probabilities in a non-Markov illness-death model. Lifetime Data Analysis, 2014, 20, 495-513.	0.9	30

Jan Beyersmann

#	Article	IF	CITATIONS
55	Incidence in ICU populations: how to measure and report it?. Intensive Care Medicine, 2014, 40, 871-876.	8.2	19
56	A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. Journal of Clinical Epidemiology, 2013, 66, 648-653.	5.0	339
57	Competing Risks and Multistate Models. Clinical Cancer Research, 2013, 19, 12-21.	7.0	47
58	Hospital-acquired infections–appropriate statistical treatment is urgently needed!. International Journal of Epidemiology, 2013, 42, 1502-1508.	1.9	85
59	Competing Risks and Multistate Models with R. , 2012, , .		214
60	Estimating summary functionals in multistate models with an application to hospital infection data. Computational Statistics, 2011, 26, 181-197.	1.5	28
61	Understanding competing risks: a simulation point of view. BMC Medical Research Methodology, 2011, 11, 86.	3.1	77
62	Application of multistate models in hospital epidemiology: Advances and challenges. Biometrical Journal, 2011, 53, 332-350.	1.0	47
63	Empirical Transition Matrix of Multi-State Models: The etm Package. Journal of Statistical Software, 2011, 38, .	3.7	116
64	Incidence Densities in a Competing Events Analysis. American Journal of Epidemiology, 2010, 172, 1077-1084.	3.4	38
65	Estimating the Cost of Health Care–Associated Infections: Mind Your p's and q's. Clinical Infectious Diseases, 2010, 50, 1017-1021.	5.8	146
66	Two Pitfalls in Survival Analyses of Time-Dependent Exposure: A Case Study in a Cohort of Oscar Nominees. American Statistician, 2010, 64, 205-211.	1.6	36
67	Modeling the effect of time-dependent exposure on intensive care unit mortality. Intensive Care Medicine, 2009, 35, 826-832.	8.2	47
68	Simulating competing risks data in survival analysis. Statistics in Medicine, 2009, 28, 956-971.	1.6	151
69	Nosocomial Infection, Length of Stay, and Time-Dependent Bias. Infection Control and Hospital Epidemiology, 2009, 30, 273-276.	1.8	78
70	The impact of timeâ€dependent bias in proportional hazards modelling. Statistics in Medicine, 2008, 27, 6439-6454.	1.6	76
71	An easy mathematical proof showed that time-dependent bias inevitably leads to biased effect estimation. Journal of Clinical Epidemiology, 2008, 61, 1216-1221.	5.0	145
72	Transmission-associated nosocomial infections: Prolongation of intensive care unit stay and risk factor analysis using multistate models. American Journal of Infection Control, 2008, 36, 98-103.	2.3	23

#	Article	IF	CITATIONS
73	Risk factors for the development of nosocomial pneumonia and mortality on intensive care units: application of competing risks models. Critical Care, 2008, 12, R44.	5.8	114
74	Time-dependent covariates in the proportional subdistribution hazards model for competing risks. Biostatistics, 2008, 9, 765-776.	1.5	102
75	A competing risks analysis of bloodstream infection after stem ell transplantation using subdistribution hazards and causeâ€specific hazards. Statistics in Medicine, 2007, 26, 5360-5369.	1.6	72