
Kazutake Hirooka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421200/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Regulation of fatty acid metabolism in bacteria. Molecular Microbiology, 2007, 66, 829-839.	2.5	376
2	Conversion of Product Specificity of Archaebacterial Geranylgeranyl-diphosphate Synthase. Journal of Biological Chemistry, 1996, 271, 18831-18837.	3.4	114
3	Elaborate transcription regulation of the <i>Bacillus subtilis ilvâ€leu</i> operon involved in the biosynthesis of branchedâ€chain amino acids through global regulators of CcpA, CodY and TnrA. Molecular Microbiology, 2005, 56, 1560-1573.	2.5	97
4	Organization and Function of the YsiA Regulon of Bacillus subtilis Involved in Fatty Acid Degradation. Journal of Biological Chemistry, 2007, 282, 5180-5194.	3.4	95
5	Conversion from Archaeal Geranylgeranyl Diphosphate Synthase to Farnesyl Diphosphate Synthase. Journal of Biological Chemistry, 1997, 272, 5192-5198.	3.4	79
6	A Pathway Where Polyprenyl Diphosphate Elongates in Prenyltransferase. Journal of Biological Chemistry, 1998, 273, 26705-26713.	3.4	79
7	Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochemical Journal, 2003, 370, 679-686.	3.7	58
8	Enhancement of Glutamine Utilization in Bacillus subtilis through the GlnK-GlnL Two-Component Regulatory System. Journal of Bacteriology, 2005, 187, 4813-4821.	2.2	45
9	Molecular Mechanisms Underlying the Positive Stringent Response of the <i>Bacillus subtilis ilv-leu</i> Operon, Involved in the Biosynthesis of Branched-Chain Amino Acids. Journal of Bacteriology, 2008, 190, 6134-6147.	2.2	39
10	Heavy Involvement of Stringent Transcription Control Depending on the Adenine or Guanine Species of the Transcription Initiation Site in Glucose and Pyruvate Metabolism in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2010, 192, 1573-1585.	2.2	38
11	Functional Analysis of Two Solanesyl Diphosphate Synthases fromArabidopsis thaliana. Bioscience, Biotechnology and Biochemistry, 2005, 69, 592-601.	1.3	37
12	Negative Transcriptional Regulation of the <i>ilv-leu</i> Operon for Biosynthesis of Branched-Chain Amino Acids through the <i>Bacillus subtilis</i> Global Regulator TnrA. Journal of Bacteriology, 2004, 186, 7971-7979.	2.2	34
13	Cloning and Characterization of Farnesyl Diphosphate Synthase from the Rubber-Producing MushroomLactarius chrysorrheus. Bioscience, Biotechnology and Biochemistry, 2004, 68, 2360-2368.	1.3	30
14	Expression of <i>kinA</i> and <i>kinB</i> of Bacillus subtilis, Necessary for Sporulation Initiation, Is under Positive Stringent Transcription Control. Journal of Bacteriology, 2013, 195, 1656-1665.	2.2	30
15	Dual Regulation of the Bacillus subtilis Regulon Comprising the ImrAB and yxaGH Operons and yxaF Gene by Two Transcriptional Repressors, LmrA and YxaF, in Response to Flavonoids. Journal of Bacteriology, 2007, 189, 5170-5182.	2.2	28
16	Structural Insights into the Low pH Adaptation of a Unique Carboxylesterase from Ferroplasma. Journal of Biological Chemistry, 2014, 289, 24499-24510.	3.4	28
17	Direct and Indirect Regulation of the <i>ycnKJI</i> Operon Involved in Copper Uptake through Two Transcriptional Repressors, YcnK and CsoR, in Bacillus subtilis. Journal of Bacteriology, 2012, 194, 5675-5687.	2.2	27
18	Molecular cloning and characterization of a thermostable carboxylesterase from an archaeon, Sulfolobus shibatae DSM5389: Non-linear kinetic behavior of a hormone-sensitive lipase family enzyme. Journal of Bioscience and Bioengineering, 2004, 98, 445-451.	2.2	26

Kazutake Hirooka

#	Article	IF	CITATIONS
19	ldentification and Characterization of a Novel Multidrug Resistance Operon, <i>mdtRP</i> (<i>yusOP</i>), of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2009, 191, 3273-3281.	2.2	23
20	Catabolite Repression of the Bacillus subtilis FadR Regulon, Which Is Involved in Fatty Acid Catabolism. Journal of Bacteriology, 2011, 193, 2388-2395.	2.2	23
21	Structural characterization of a ligandâ€bound form of <i>Bacillus subtilis</i> FadR involved in the regulation of fatty acid degradation. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1301-1310.	2.6	23
22	Regulation of the <i>Bacillus subtilis</i> Divergent <i>yetL</i> and <i>yetM</i> Genes by a Transcriptional Repressor, YetL, in Response to Flavonoids. Journal of Bacteriology, 2009, 191, 3685-3697.	2.2	22
23	Temperature-dependent modulation of farnesyl diphosphate/geranylgeranyl diphosphate synthase from hyperthermophilic archaea. Biochemical and Biophysical Research Communications, 2004, 325, 1066-1074.	2.1	19
24	Excess Production of <i>Bacillus subtilis</i> Quercetin 2,3-Dioxygenase Affects Cell Viability in the Presence of Quercetin. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1030-1038.	1.3	19
25	Enzymatic and structural characterization of type II isopentenyl diphosphate isomerase from hyperthermophilic archaeon Thermococcus kodakaraensis. Biochemical and Biophysical Research Communications, 2005, 331, 1127-1136.	2.1	17
26	CcpA-Mediated Catabolite Activation of the Bacillus subtilis ilv-leu Operon and Its Negation by Either CodY- or TnrA-Mediated Negative Regulation. Journal of Bacteriology, 2014, 196, 3793-3806.	2.2	17
27	Regulation of the <i>rhaEWRBMA</i> Operon Involved in <scp>l</scp> -Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis. Journal of Bacteriology, 2016, 198, 830-845.	2.2	15
28	Mechanism of product chain length determination for heptaprenyl diphosphate synthase from Bacillus stearothermophilus. FEBS Journal, 2000, 267, 4520-4528.	0.2	14
29	Identification of Aromatic Residues Critical to the DNA Binding and Ligand Response of theBacillus subtilisQdoR (YxaF) Repressor Antagonized by Flavonoids. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1325-1334.	1.3	12
30	Transcriptional response machineries of Bacillus subtilis conducive to plant growth promotion. Bioscience, Biotechnology and Biochemistry, 2014, 78, 1471-1484.	1.3	12
31	Orphan Nuclear Receptor RORα Regulates Enzymatic Metabolism of Cerebral 24S-Hydroxycholesterol through CYP39A1 Intronic Response Element Activation. International Journal of Molecular Sciences, 2020, 21, 3309.	4.1	10
32	Efficient synthesis of trans-polyisoprene compounds using two thermostable enzymes in an organic–aqueous dual-liquid phase system. Biochemical and Biophysical Research Communications, 2008, 365, 118-123.	2.1	9
33	Efficient in vitro synthesis of cis-polyisoprenes using a thermostable cis-prenyltransferase from a hyperthermophilic archaeon Thermococcus kodakaraensis. Journal of Biotechnology, 2009, 143, 151-156.	3.8	8
34	Bacillus subtilis highly efficient protein expression systems that are chromosomally integrated and controllable by glucose and rhamnose. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1942-1954.	1.3	7
35	Identification of critical residues for the catalytic activity of ComQ, a <i>Bacillus</i> prenylation enzyme for quorum sensing, by using a simple bioassay system. Bioscience, Biotechnology and Biochemistry, 2020, 84, 347-357.	1.3	7
36	The role of histidine-114 ofSulfolobus acidocaldariusgeranylgeranyl diphosphate synthase in chain-length determination. FEBS Letters, 2000, 481, 68-72.	2.8	6

#	Article	IF	CITATIONS
37	Dual Regulation of Bacillus subtilis kinB Gene Encoding a Sporulation Trigger by SinR through Transcription Repression and Positive Stringent Transcription Control. Frontiers in Microbiology, 2017, 8, 2502.	3.5	3
38	Dramatic changes in the substrate specificities of prenyltransferase by a single amino acid substitution. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 431-436.	1.8	2