
Bei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211857/publications.pdf Version: 2024-02-01

REI WANG

#	Article	IF	CITATIONS
1	Facile Synthesis and Characterization of Graphene Nanosheets. Journal of Physical Chemistry C, 2008, 112, 8192-8195.	3.1	1,894
2	Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon, 2009, 47, 1359-1364.	10.3	565
3	Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. Journal of Materials Chemistry, 2009, 19, 8378.	6.7	523
4	In situ chemical synthesis of SnO2–graphene nanocomposite as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1849-1852.	4.7	520
5	Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon, 2009, 47, 68-72.	10.3	446
6	Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods. Journal of Physical Chemistry C, 2009, 113, 4357-4361.	3.1	374
7	Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 2009, 47, 3242-3246.	10.3	322
8	Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon, 2012, 50, 727-733.	10.3	238
9	Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors. Electrochimica Acta, 2010, 55, 6812-6817.	5.2	231
10	Synthesis of Phosphorusâ€Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors. Chemistry - A European Journal, 2015, 21, 80-85.	3.3	230
11	Solvothermal synthesis of CoS2–graphene nanocomposite material for high-performance supercapacitors. Journal of Materials Chemistry, 2012, 22, 15750.	6.7	205
12	In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. Journal of Alloys and Compounds, 2011, 509, 7778-7783.	5.5	159
13	Advanced mechanical properties of graphene paper. Journal of Applied Physics, 2011, 109, .	2.5	146
14	Highly Ordered Mesoporous Cobalt Oxide Nanostructures: Synthesis, Characterisation, Magnetic Properties, and Applications for Electrochemical Energy Devices. Chemistry - A European Journal, 2010, 16, 11020-11027.	3.3	136
15	Electrochemical and Structural Study of Layered P2â€₹ype Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ as Cathode Material for Sodium″on Battery. Chemistry - an Asian Journal, 2015, 10, 661-666.	3.3	88
16	Superior Electrochemical Performance of Sulfur/Graphene Nanocomposite Material for High apacity Lithium–Sulfur Batteries. Chemistry - an Asian Journal, 2012, 7, 1637-1643.	3.3	58
17	Enhance electrochemical performance of lithium sulfur battery through a solution-based processing technique. Journal of Power Sources, 2012, 202, 389-393.	7.8	57
18	Capacity-controllable Li-rich cathode materials for lithium-ion batteries. Nano Energy, 2014, 6, 92-102.	16.0	53

Bei Wang

#	Article	IF	CITATIONS
19	Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 18767-18774.	10.3	52
20	Dual Protection of Sulfur by Carbon Nanospheres and Graphene Sheets for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2014, 20, 5224-5230.	3.3	39
21	Synthesis of nanosized vanadium pentoxide/carbon composites by spray pyrolysis for electrochemical capacitor application. Electrochimica Acta, 2009, 54, 1420-1425.	5.2	38
22	Graphene-supported SnO2 nanoparticles prepared by a solvothermal approach for an enhanced electrochemical performance in lithium-ion batteries. Nanoscale Research Letters, 2012, 7, 215.	5.7	38
23	Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors. Materials Chemistry and Physics, 2014, 143, 740-746.	4.0	34
24	Longâ€Term Cycling Performance of Nitrogenâ€Doped Hollow Carbon Nanospheres as Anode Materials for Sodiumâ€Ion Batteries. European Journal of Inorganic Chemistry, 2016, 2016, 2051-2055.	2.0	29
25	Sulfonation of graphene nanosheet-supported platinum via a simple thermal-treatment toward its oxygen reduction activity in acid medium. International Journal of Hydrogen Energy, 2012, 37, 14205-14210.	7.1	22
26	Coral-like V2O5 nanowhiskers as high-capacity cathode materials for lithium-ion batteries. RSC Advances, 2013, 3, 5069.	3.6	20
27	Toward Label-Free Biosensing With Silicon Carbide: A Review. IEEE Access, 2016, 4, 477-497.	4.2	19
28	A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors. Nanotechnology, 2015, 26, 434005.	2.6	18
29	On-Silicon Supercapacitors with Enhanced Storage Performance. Journal of the Electrochemical Society, 2017, 164, A638-A644.	2.9	16
30	In ₃ Se ₄ and S-doped In ₃ Se ₄ nano/micro-structures as new anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7560-7567.	10.3	15
31	All-solid-state supercapacitors on silicon using graphene from silicon carbide. Applied Physics Letters, 2016, 108, 183903.	3.3	15
32	Preparation and Enhanced Electrochemical Performance of MnO ₂ Nanosheets for Supercapacitors. Journal of the Chinese Chemical Society, 2012, 59, 1275-1279.	1.4	9
33	Enhanced Performance of a Pillared TiO ₂ Nanohybrid as an Anode Material for Fast and Reversible Lithium Storage. ChemNanoMat, 2015, 1, 96-101.	2.8	9
34	Functional Microarray Platform with Self-Assembled Monolayers on 3C-Silicon Carbide. Langmuir, 2020, 36, 13181-13192.	3.5	5
35	Porous LiFePO4/C Microspheres as High-Power Cathode Materials for Lithium Ion Batteries. Journal of Nanoscience and Nanotechnology, 2013, 13, 3655-3659.	0.9	4