
Eric C Holland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Essentials of Multiomics. Oncologist, 2022, 27, 272-284.	3.7	11
2	Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nature Cancer, 2022, 3, 25-42.	13.2	52
3	Angiogenin and plexin-B2 axis promotes glioblastoma progression by enhancing invasion, vascular association, proliferation and survival. British Journal of Cancer, 2022, 127, 422-435.	6.4	9
4	Olverembatinib inhibits SARSâ€CoVâ€2â€Omicron variantâ€mediated cytokine release in human peripheral blood mononuclear cells. EMBO Molecular Medicine, 2022, 14, e15919.	6.9	7
5	Radiogenomic modeling predicts survival-associated prognostic groups in glioblastoma. Neuro-Oncology Advances, 2021, 3, vdab004.	0.7	3
6	OUP accepted manuscript. Neuro-Oncology, 2021, 23, S4-S15.	1.2	3
7	Leveraging the replicationâ€competent avianâ€like sarcoma virus/tumor virus receptorâ€A system for modeling human gliomas. Glia, 2021, 69, 2059-2076.	4.9	7
8	C11orf95-RELA fusion drives aberrant gene expression through the unique epigenetic regulation for ependymoma formation. Acta Neuropathologica Communications, 2021, 9, 36.	5.2	14
9	Computational modelling of perivascular-niche dynamics for the optimization of treatment schedules for glioblastoma. Nature Biomedical Engineering, 2021, 5, 346-359.	22.5	13
10	Combined VEGFR and MAPK pathway inhibition in angiosarcoma. Scientific Reports, 2021, 11, 9362.	3.3	14
11	YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Developmental Biology, 2021, 475, 205-221.	2.0	62
12	Machine learning identifies molecular regulators and therapeutics for targeting SARS oV2â€induced cytokine release. Molecular Systems Biology, 2021, 17, e10426.	7.2	18
13	A brain-penetrant microtubule-targeting agent that disrupts hallmarks of glioma tumorigenesis. Neuro-Oncology Advances, 2021, 3, vdaa165.	0.7	10
14	Machine learning modeling of genome-wide copy number alteration signatures reliably predicts IDH mutational status in adult diffuse glioma. Acta Neuropathologica Communications, 2021, 9, 191.	5.2	4
15	Anti–PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro-Oncology, 2020, 22, 639-651.	1.2	34
16	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nature Communications, 2020, 11, 4997.	12.8	109
17	Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes and Development, 2020, 34, 1051-1064.	5.9	48
18	Phenotypic characterization with somatic genome editing and gene transfer reveals the diverse oncogenicity of ependymoma fusion genes. Acta Neuropathologica Communications, 2020, 8, 203.	5.2	8

#	Article	IF	CITATIONS
19	Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses. , 2020, 8, e001356.		44
20	Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Science Advances, 2020, 6, eaaz3221.	10.3	67
21	A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nature Communications, 2020, 11, 2977.	12.8	26
22	Tumor endothelial cell up-regulation of IDO1 is an immunosuppressive feed-back mechanism that reduces the response to CD40-stimulating immunotherapy. OncoImmunology, 2020, 9, 1730538.	4.6	23
23	Mathematical modeling of PDCF-driven glioma reveals the dynamics of immune cells infiltrating into tumors. Neoplasia, 2020, 22, 323-332.	5.3	8
24	Multimodal singleâ€cell analysis reveals distinct radioresistant stemâ€like and progenitor cell populations in murine glioma. Glia, 2020, 68, 2486-2502.	4.9	8
25	Wnt-mediated endothelial transformation into mesenchymal stem cell–like cells induces chemoresistance in glioblastoma. Science Translational Medicine, 2020, 12, .	12.4	86
26	Variability in estimated gene expression among commonly used RNA-seq pipelines. Scientific Reports, 2020, 10, 2734.	3.3	43
27	Translating Basic Science Discoveries into Improved Outcomes for Glioblastoma. Clinical Cancer Research, 2020, 26, 2457-2460.	7.0	8
28	cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathologica, 2020, 139, 603-608.	7.7	344
29	Stochastic growth pattern of untreated human glioblastomas predicts the survival time for patients. Scientific Reports, 2020, 10, 6642.	3.3	5
30	Incorporating genomic signatures into surgical and medical decision-making for elderly glioblastoma patients. Neurosurgical Focus, 2020, 49, E11.	2.3	4
31	Cooperation of oncolytic virotherapy with VEGF-neutralizing antibody treatment in IDH wildtype glioblastoma depends on MMP9. Neuro-Oncology, 2019, 21, 1607-1609.	1.2	9
32	IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nature Cell Biology, 2019, 21, 1003-1014.	10.3	107
33	Mitotic Index Thresholds Do Not Predict Clinical Outcome for IDH-Mutant Astrocytoma. Journal of Neuropathology and Experimental Neurology, 2019, 78, 1002-1010.	1.7	32
34	Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncolmmunology, 2019, 8, e1655360.	4.6	76
35	YAP1 subgroup supratentorial ependymoma requires TEAD and nuclear factor I-mediated transcriptional programmes for tumorigenesis. Nature Communications, 2019, 10, 3914.	12.8	65
36	Reply to â€~Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	27.6	0

#	Article	IF	CITATIONS
37	Targeted copy number analysis outperforms histologic grading in predicting patient survival for WHO grades II/III IDH-mutant astrocytomas. Neuro-Oncology, 2019, 21, 819-821.	1.2	31
38	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	27.6	540
39	PATH-07. MITOTIC INDEX THRESHOLDS DO NOT PREDICT CLINICAL OUTCOME FOR IDH-MUTANT ASTROCYTOMA. Neuro-Oncology, 2019, 21, vi144-vi144.	1.2	0
40	TMOD-30. CHARACTERIZATION OF AN ALTERNATIVELY SPLICED NTRK2 VARIANT IN GLIOMAS. Neuro-Oncology, 2019, 21, vi269-vi269.	1.2	0
41	GENE-04. THE ONCOGENIC FUNCTIONS OF YAP1-GENE FUSIONS CAN BE INHIBITED BY DISRUPTION OF YAP1-TEAD INTERACTION. Neuro-Oncology, 2019, 21, vi98-vi98.	1.2	1
42	DDIS-29. BRAIN-PENETRANT MICROTUBULE-TARGETING AGENT, ST-401, KILLS GLIOBLASTOMA THROUGH A NOVEL MECHANISM. Neuro-Oncology, 2019, 21, vi69-vi69.	1.2	0
43	Patterns of Failure After Stereotactic Radiosurgery for Recurrent High-Grade Glioma: A Single Institution Experience of 10 Years. Neurosurgery, 2019, 85, E322-E331.	1.1	9
44	Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 2019, 4, .	5.0	24
45	The molecular landscape of adult diffuse gliomas and relevance to clinical trials. Oncotarget, 2019, 10, 1758-1759.	1.8	2
46	Increased <i>HOXA5</i> expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma. Genes and Development, 2018, 32, 512-523.	5.9	40
47	Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neuro-Oncology, 2018, 20, 355-366.	1.2	32
48	PATH-51. DNA COPY NUMBER PROFILING ACROSS GLIOBLASTOMA POPULATIONS HAS IMPLICATIONS FOR CLINICAL TRIAL DESIGN. Neuro-Oncology, 2018, 20, vi169-vi170.	1.2	0
49	TMIC-05. ABSCOPAL IMMUNE RESPONSE IN GLIOBLASTOMA ELICITED BY MIR124-ATTENUATED ONCOLYTIC HERPES SIMPLEX VIRUS 1 ARMED WITH UL16 BINDING PROTEIN 3. Neuro-Oncology, 2018, 20, vi256-vi257.	1.2	0
50	TMIC-53. IDENTIFICATION OF MYELOID CELL-DERIVED TRANSCRIPTS IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi268-vi268.	1.2	0
51	TMOD-30. ANTI-PD-L1 ANTIBODY ENHANCES RADIATION INDUCED ABSCOPAL RESPONSE IN MURINE BRAIN TUMORS. Neuro-Oncology, 2018, 20, vi275-vi275.	1.2	0
52	RTHP-27. PATTERNS OF FAILURE AFTER STEREOTACTIC RADIOSURGERY FOR RECURRENT HIGH-GRADE GLIOMA: A SINGLE INSTITUTION EXPERIENCE OF 10 YEARS. Neuro-Oncology, 2018, 20, vi230-vi230.	1.2	0
53	CSIG-17. CHARACTERIZATION OF AN ALTERNATIVELY SPLICED NTRK2 VARIANT IN GLIOMA: EMPLOYING NOVEL REAGENTS TO UNCOVER NOVEL FUNCTIONS. Neuro-Oncology, 2018, 20, vi46-vi46.	1.2	0
54	TMIC-13. EFFICACY OF RETINOIC ACID IN REVERSING IMMUNE EVASION IN IDH MUTANT GLIOMAS. Neuro-Oncology, 2018, 20, vi258-vi258.	1.2	0

#	Article	IF	CITATIONS
55	Microglia Induce PDGFRB Expression in Glioma Cells to Enhance Their Migratory Capacity. IScience, 2018, 9, 71-83.	4.1	38
56	Analysis and visualization of linked molecular and clinical cancer data by using Oncoscape. Nature Genetics, 2018, 50, 1203-1204.	21.4	10
57	Nanoparticles That Reshape the Tumor Milieu Create a Therapeutic Window for Effective T-cell Therapy in Solid Malignancies. Cancer Research, 2018, 78, 3718-3730.	0.9	83
58	A De Novo Mouse Model of C11orf95-RELA Fusion-Driven Ependymoma Identifies Driver Functions in Addition to NF-κB. Cell Reports, 2018, 23, 3787-3797.	6.4	53
59	Copy number profiling across glioblastoma populations has implications for clinical trial design. Neuro-Oncology, 2018, 20, 1368-1373.	1.2	28
60	Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes and Development, 2017, 31, 774-786.	5.9	313
61	Nanoparticle-mediated knockdown of DNA repair sensitizes cells to radiotherapy and extends survival in a genetic mouse model of glioblastoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2131-2139.	3.3	37
62	Multidimensional scaling of diffuse gliomas: application to the 2016 World Health Organization classification system with prognostically relevant molecular subtype discovery. Acta Neuropathologica Communications, 2017, 5, 39.	5.2	110
63	Putting Glioblastoma in Its Place: IRF3 Inhibits Invasion. Trends in Molecular Medicine, 2017, 23, 773-776.	6.7	2
64	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	7.7	271
65	High Precision Imaging of Microscopic Spread of Clioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe. Theranostics, 2016, 6, 1075-1084.	10.0	96
66	Human glioblastomaâ€associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia, 2016, 64, 1416-1436.	4.9	90
67	Corticosteroids compromise survival in glioblastoma. Brain, 2016, 139, 1458-1471.	7.6	271
68	Evaluation of Concurrent Radiation, Temozolomide and ABT-888 Treatment Followed by Maintenance Therapy with Temozolomide and ABT-888 in a Genetically Engineered Glioblastoma Mouse Model. Neoplasia, 2016, 18, 82-89.	5.3	21
69	The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science, 2016, 352, aad3018.	12.6	477
70	Olig2-Dependent Reciprocal Shift in PDGF and EGF Receptor Signaling Regulates Tumor Phenotype and Mitotic Growth in Malignant Glioma. Cancer Cell, 2016, 29, 669-683.	16.8	98
71	Big data visualization identifies the multidimensional molecular landscape of human gliomas. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5394-5399.	7.1	45
72	ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells. Scientific Reports, 2016, 6, 25956.	3.3	45

#	Article	IF	CITATIONS
73	Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastomaÂaggression. Nature Cell Biology, 2016, 18, 1336-1345.	10.3	259
74	Suppression of autophagy impedes glioblastoma development and induces senescence. Autophagy, 2016, 12, 1431-1439.	9.1	89
75	Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits. Computational Statistics and Data Analysis, 2016, 95, 222-239.	1.2	22
76	Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Science Translational Medicine, 2015, 7, 274ra17.	12.4	257
77	Glioma Stem-like Cells Keep Their H3.3 Variant Levels at Bay. Cancer Cell, 2015, 28, 679-680.	16.8	0
78	Personalized Medicine for Gliomas. , 2015, 6, 89.		31
79	Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Science Translational Medicine, 2015, 7, 271ra7.	12.4	236
80	Metabolic Profiling of Dividing Cells in Live Rodent Brain by Proton Magnetic Resonance Spectroscopy (1HMRS) and LCModel Analysis. PLoS ONE, 2014, 9, e94755.	2.5	18
81	In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural-mesenchymal shift. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5248-5253.	7.1	152
82	Sox2, a marker for stemâ€like tumor cells in skin squamous cell carcinoma and hedgehog subgroup medulloblastoma. EMBO Journal, 2014, 33, 1984-1986.	7.8	10
83	Oncogenic Signaling Is Dominant to Cell of Origin and Dictates Astrocytic or Oligodendroglial Tumor Development from Oligodendrocyte Precursor Cells. Journal of Neuroscience, 2014, 34, 14644-14651.	3.6	42
84	Most Human Non-GCIMP Clioblastoma Subtypes Evolve from a Common Proneural-like Precursor Glioma. Cancer Cell, 2014, 26, 288-300.	16.8	322
85	Loss of the tyrosine phosphatase PTPRD leads to aberrant STAT3 activation and promotes gliomagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8149-8154.	7.1	80
86	Osteopontin-CD44 Signaling in the Glioma Perivascular Niche Enhances Cancer Stem Cell Phenotypes and Promotes Aggressive Tumor Growth. Cell Stem Cell, 2014, 14, 357-369.	11.1	411
87	Mathematical Modeling of PDGF-Driven Glioblastoma Reveals Optimized Radiation Dosing Schedules. Cell, 2014, 156, 603-616.	28.9	241
88	Rethinking glioma treatment strategy. Oncotarget, 2014, 5, 9532-9533.	1.8	7
89	CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 2013, 19, 1264-1272.	30.7	1,812
90	Glioblastoma: Molecular Analysis and Clinical Implications. Annual Review of Medicine, 2013, 64, 59-70.	12.2	81

#	Article	IF	CITATIONS
91	miR-34a Repression in Proneural Malignant Gliomas Upregulates Expression of Its Target PDGFRA and Promotes Tumorigenesis. PLoS ONE, 2012, 7, e33844.	2.5	106
92	Identification of Global Alteration of Translational Regulation in Glioma In Vivo. PLoS ONE, 2012, 7, e46965.	2.5	21
93	Recruited Cells Can Become Transformed and Overtake PDGF-Induced Murine Gliomas In Vivo during Tumor Progression. PLoS ONE, 2011, 6, e20605.	2.5	72
94	Cyclin D1 and Cdk4 Mediate Development of Neurologically Destructive Oligodendroglioma. Cancer Research, 2011, 71, 6174-6183.	0.9	35
95	Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nature Reviews Cancer, 2010, 10, 319-331.	28.4	660
96	The perivascular niche microenvironment in brain tumor progression. Cell Cycle, 2010, 9, 3084-3093.	2.6	147
97	TRRAP and the Maintenance of Stemness in Gliomas. Cell Stem Cell, 2010, 6, 6-7.	11.1	16
98	Perivascular Nitric Oxide Activates Notch Signaling and Promotes Stem-like Character in PDGF-Induced Glioma Cells. Cell Stem Cell, 2010, 6, 141-152.	11.1	493
99	PTEN/PI3K/Akt Pathway Regulates the Side Population Phenotype and ABCG2 Activity in Glioma Tumor Stem-like Cells. Cell Stem Cell, 2009, 4, 226-235.	11.1	740
100	Modeling Adult Gliomas Using RCAS/t-va Technology. Translational Oncology, 2009, 2, 89-IN6.	3.7	238
101	PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes and Development, 2008, 22, 436-448.	5.9	413
102	Somatic cell type specific gene transfer reveals a tumor-promoting function for p21Waf1/Cip1. EMBO Journal, 2007, 26, 4683-4693.	7.8	50
103	Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Letters, 2006, 232, 139-147.	7.2	189
104	Genetically Engineered Models Have Advantages over Xenografts for Preclinical Studies. Cancer Research, 2006, 66, 3355-3359.	0.9	205
105	mTOR Promotes Survival and Astrocytic Characteristics Induced by Pten/Akt Signaling in Glioblastoma. Neoplasia, 2005, 7, 356-368.	5.3	165
106	Dose-Dependent Effects of Platelet-Derived Growth Factor-B on Glial Tumorigenesis. Cancer Research, 2004, 64, 4783-4789.	0.9	201
107	A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. Journal of Neurosurgery, 2001, 95, 190-198.	1.6	2,484
108	PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes and Development, 2001, 15, 1913-1925.	5.9	611

#	Article	IF	CITATIONS
109	Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics, 2000, 25, 55-57.	21.4	827