
## **Corey Oses**

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4210477/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | High-entropy ceramics. Nature Reviews Materials, 2020, 5, 295-309.                                                                                                                        | 48.7 | 902       |
| 2  | High-entropy high-hardness metal carbides discovered by entropy descriptors. Nature Communications, 2018, 9, 4980.                                                                        | 12.8 | 604       |
| 3  | Universal fragment descriptors for predicting properties of inorganic crystals. Nature<br>Communications, 2017, 8, 15679.                                                                 | 12.8 | 435       |
| 4  | Machine learning modeling of superconducting critical temperature. Npj Computational Materials, 2018, 4, .                                                                                | 8.7  | 274       |
| 5  | The AFLOW standard for high-throughput materials science calculations. Computational Materials Science, 2015, 108, 233-238.                                                               | 3.0  | 244       |
| 6  | Materials Cartography: Representing and Mining Materials Space Using Structural and Electronic<br>Fingerprints. Chemistry of Materials, 2015, 27, 735-743.                                | 6.7  | 209       |
| 7  | Accelerated discovery of new magnets in the Heusler alloy family. Science Advances, 2017, 3, e1602241.                                                                                    | 10.3 | 197       |
| 8  | On-the-fly closed-loop materials discovery via Bayesian active learning. Nature Communications, 2020,<br>11, 5966.                                                                        | 12.8 | 167       |
| 9  | Discovery of high-entropy ceramics via machine learning. Npj Computational Materials, 2020, 6, .                                                                                          | 8.7  | 133       |
| 10 | Modeling Off-Stoichiometry Materials with a High-Throughput Ab-Initio Approach. Chemistry of Materials, 2016, 28, 6484-6492.                                                              | 6.7  | 78        |
| 11 | Predicting superhard materials via a machine learning informed evolutionary structure search. Npj<br>Computational Materials, 2019, 5, .                                                  | 8.7  | 74        |
| 12 | AFLOW-ML: A RESTful API for machine-learning predictions of materials properties. Computational Materials Science, 2018, 152, 134-145.                                                    | 3.0  | 72        |
| 13 | A computational high-throughput search for new ternary superalloys. Acta Materialia, 2017, 122,<br>438-447.                                                                               | 7.9  | 70        |
| 14 | AFLOW-CHULL: Cloud-Oriented Platform for Autonomous Phase Stability Analysis. Journal of Chemical<br>Information and Modeling, 2018, 58, 2477-2490.                                       | 5.4  | 69        |
| 15 | Unavoidable disorder and entropy in multi-component systems. Npj Computational Materials, 2019, 5, .                                                                                      | 8.7  | 61        |
| 16 | AFLUX: The LUX materials search API for the AFLOW data repositories. Computational Materials Science, 2017, 137, 362-370.                                                                 | 3.0  | 56        |
| 17 | Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids. Physical Review Materials, 2017, 1, .                           | 2.4  | 47        |
| 18 | <i>AFLOW-SYM</i> : platform for the complete, automatic and self-consistent symmetry analysis of crystals. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, 184-203. | 0.1  | 44        |

**COREY OSES** 

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Coordination corrected ab initio formation enthalpies. Npj Computational Materials, 2019, 5, .                                                                                   | 8.7  | 38        |
| 20 | Entropy Landscaping of Highâ€Entropy Carbides. Advanced Materials, 2021, 33, e2102904.                                                                                           | 21.0 | 38        |
| 21 | Data-driven design of inorganic materials with the Automatic Flow Framework for Materials<br>Discovery. MRS Bulletin, 2018, 43, 670-675.                                         | 3.5  | 35        |
| 22 | Carbon stoichiometry and mechanical properties of high entropy carbides. Acta Materialia, 2021, 215, 117051.                                                                     | 7.9  | 28        |
| 23 | Settling the matter of the role of vibrations in the stability of high-entropy carbides. Nature Communications, 2021, 12, 5747.                                                  | 12.8 | 28        |
| 24 | High-entropy ceramics: Propelling applications through disorder. MRS Bulletin, 2022, 47, 194-202.                                                                                | 3.5  | 26        |
| 25 | Metallic glasses for biodegradable implants. Acta Materialia, 2019, 176, 297-305.                                                                                                | 7.9  | 25        |
| 26 | The AFLOW Library of Crystallographic Prototypes: Part 3. Computational Materials Science, 2021, 199, 110450.                                                                    | 3.0  | 16        |
| 27 | The AFLOW Fleet for Materials Discovery. , 2018, , 1-28.                                                                                                                         |      | 9         |
| 28 | Automated coordination corrected enthalpies with AFLOW-CCE. Physical Review Materials, 2021, 5, .                                                                                | 2.4  | 9         |
| 29 | AFLOW-QHA3P: Robust and automated method to compute thermodynamic properties of solids.<br>Physical Review Materials, 2019, 3, .                                                 | 2.4  | 8         |
| 30 | Tin-pest problem as a test of density functionals using high-throughput calculations. Physical Review<br>Materials, 2021, 5, .                                                   | 2.4  | 7         |
| 31 | Physics in the Machine: Integrating Physical Knowledge in Autonomous Phase-Mapping. Frontiers in Physics, 2022, 10, .                                                            | 2.1  | 6         |
| 32 | The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes<br>at Ambient Pressure. Angewandte Chemie - International Edition, 2022, 61, . | 13.8 | 5         |
| 33 | The Structure and Composition Statistics of 6A Binary and Ternary Crystalline Materials. Inorganic Chemistry, 2018, 57, 653-667.                                                 | 4.0  | 4         |
| 34 | The AFLOW Fleet for Materials Discovery. , 2020, , 1785-1812.                                                                                                                    |      | 4         |
| 35 | Machine Learning and High-Throughput Approaches to Magnetism. , 2018, , 1-23.                                                                                                    |      | 3         |
| 36 | The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes<br>at Ambient Pressure. Angewandte Chemie, 2022, 134, .                        | 2.0  | 3         |

0

| #  | Article                                                                          | IF | CITATIONS |
|----|----------------------------------------------------------------------------------|----|-----------|
| 37 | Machine Learning and High-Throughput Approaches to Magnetism. , 2020, , 351-373. |    | 2         |
|    |                                                                                  |    |           |

The AFLOW Fleet for Materials Discovery. , 2019, , 1-28.