Joanna J Phillips

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4210309/publications.pdf

Version: 2024-02-01

148	10,669	49	96
papers	citations	h-index	g-index
150	150	150	15825
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	16.8	1,282
2	New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell, 2016, 164, 1060-1072.	28.9	702
3	VEGF Inhibits Tumor Cell Invasion and Mesenchymal Transition through a MET/VEGFR2 Complex. Cancer Cell, 2012, 22, 21-35.	16.8	495
4	Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology, 2016, 18, 557-564.	1.2	432
5	Association of Maximal Extent of Resection of Contrast-Enhanced and Non–Contrast-Enhanced Tumor With Survival Within Molecular Subgroups of Patients With Newly Diagnosed Glioblastoma. JAMA Oncology, 2020, 6, 495.	7.1	325
6	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
7	Tissue mechanics promote IDH1-dependent HIF1α–tenascin C feedback to regulate glioblastomaÂaggression. Nature Cell Biology, 2016, 18, 1336-1345.	10.3	259
8	A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro-Oncology, 2017, 19, 1135-1144.	1.2	236
9	DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors. Cancer Cell, 2015, 28, 307-317.	16.8	221
10	Pediatric high-grade glioma: biologically and clinically in need of new thinking. Neuro-Oncology, 2017, 19, now101.	1.2	217
11	Epigenetic Activation of WNT5A Drives Glioblastoma Stem Cell Differentiation and Invasive Growth. Cell, 2016, 167, 1281-1295.e18.	28.9	207
12	The Phenotypes of Proliferating Glioblastoma Cells Reside on a Single Axis of Variation. Cancer Discovery, 2019, 9, 1708-1719.	9.4	205
13	Asymmetry-Defective Oligodendrocyte Progenitors Are Glioma Precursors. Cancer Cell, 2011, 20, 328-340.	16.8	200
14	A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. Cancer Cell, 2018, 33, 874-889.e7.	16.8	180
15	Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncology, 2015, 17, 1051-1063.	1.2	178
16	Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell, 2020, 183, 1962-1985.e31.	28.9	177
17	Magnetic Resonance of 2-Hydroxyglutarate in <i>IDH1</i> -Mutated Low-Grade Gliomas. Science Translational Medicine, 2012, 4, 116ra5.	12.4	161
18	Proteoglycans and their roles in brain cancer. FEBS Journal, 2013, 280, 2399-2417.	4.7	158

#	Article	IF	CITATIONS
19	Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro-Oncology, 2017, 19, now254.	1.2	155
20	Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis. Lancet Oncology, The, 2015, 16, 569-582.	10.7	147
21	Increased Microglia/Macrophage Gene Expression in a Subset of Adult and Pediatric Astrocytomas. PLoS ONE, 2012, 7, e43339.	2.5	142
22	A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell, 2017, 31, 424-435.	16.8	138
23	Timing and significance of pathological features in <i>C9orf72</i> expansion-associated frontotemporal dementia. Brain, 2016, 139, 3202-3216.	7.6	136
24	Non-invasive in vivo assessment of IDH1 mutational status in glioma. Nature Communications, 2013, 4, 2429.	12.8	118
25	Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant $\langle i \rangle$ IDH1 $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10743-10748.	7.1	109
26	<i>IDH1</i> Mutation Induces Reprogramming of Pyruvate Metabolism. Cancer Research, 2015, 75, 2999-3009.	0.9	106
27	A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nature Cell Biology, 2018, 20, 1203-1214.	10.3	103
28	The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas. Modern Pathology, 2013, 26, 1425-1432.	5.5	98
29	Comprehensive Molecular Profiling Identifies FOXM1 as a Key Transcription Factor for Meningioma Proliferation. Cell Reports, 2018, 22, 3672-3683.	6.4	95
30	Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nature Genetics, 2022, 54, 649-659.	21.4	93
31	Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. Journal of Neuro-Oncology, 2016, 130, 543-552.	2.9	90
32	The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathology, 2019, 29, 85-96.	4.1	88
33	Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma. Journal of Clinical Investigation, 2012, 122, 911-922.	8.2	87
34	PTEN promoter methylation and activation of the PI3K/Akt/mTOR pathway in pediatric gliomas and influence on clinical outcome. Neuro-Oncology, 2012, 14, 1146-1152.	1.2	85
35	A pilot precision medicine trial for children with diffuse intrinsic pontine gliomaâ€"PNOC003: A report from the Pacific Pediatric Neuroâ€Oncology Consortium. International Journal of Cancer, 2019, 145, 1889-1901.	5.1	84
36	<scp><i>PDGFRA</i></scp> Amplification is Common in Pediatric and Adult Highâ€Grade Astrocytomas and Identifies a Poor Prognostic Group in <scp>IDH</scp> 1 Mutant Glioblastoma. Brain Pathology, 2013, 23, 565-573.	4.1	83

#	Article	IF	CITATIONS
37	Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. Journal of Neuro-Oncology, 2018, 140, 477-483.	2.9	82
38	Glycosylation Alterations in Lung and Brain Cancer. Advances in Cancer Research, 2015, 126, 305-344.	5.0	79
39	Hyperpolarized [1-13C] Glutamate: A Metabolic Imaging Biomarker of IDH1 Mutational Status in Glioma. Cancer Research, 2014, 74, 4247-4257.	0.9	77
40	Adenomatoid tumors of the male and female genital tract are defined by TRAF7 mutations that drive aberrant NF-kB pathway activation. Modern Pathology, 2018, 31, 660-673.	5. 5	76
41	Chemotherapy for adult low-grade gliomas: clinical outcomes by molecular subtype in a phase II study of adjuvant temozolomide. Neuro-Oncology, 2017, 19, now176.	1.2	70
42	Highâ€grade neuroepithelial tumor with <i>BCOR</i> exon 15 internal tandem duplication—a comprehensive clinical, radiographic, pathologic, and genomic analysis. Brain Pathology, 2020, 30, 46-62.	4.1	69
43	Cellular architecture of human brain metastases. Cell, 2022, 185, 729-745.e20.	28.9	69
44	Prospective Feasibility Trial for Genomics-Informed Treatment in Recurrent and Progressive Glioblastoma. Clinical Cancer Research, 2018, 24, 295-305.	7.0	68
45	Metabolic Reprogramming in Mutant IDH1 Glioma Cells. PLoS ONE, 2015, 10, e0118781.	2.5	67
46	Numerical chromosomal instability mediates susceptibility to radiation treatment. Nature Communications, 2015, 6, 5990.	12.8	63
47	Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma. Scientific Reports, 2017, 7, 44792.	3.3	63
48	Glioma Cells with the IDH1 Mutation Modulate Metabolic Fractional Flux through Pyruvate Carboxylase. PLoS ONE, 2014, 9, e108289.	2.5	62
49	The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathologica, 2019, 137, 139-150.	7.7	57
50	A recurrent kinase domain mutation in PRKCA defines chordoid glioma of the third ventricle. Nature Communications, 2018, 9, 810.	12.8	56
51	Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells Recapitulates Medulloblastoma Tumorigenesis. Cell Stem Cell, 2019, 25, 433-446.e7.	11.1	56
52	Mutant IDH1 Expression Drives <i>TERT</i> Promoter Reactivation as Part of the Cellular Transformation Process. Cancer Research, 2016, 76, 6680-6689.	0.9	55
53	MGMT promoter methylation level in newly diagnosed low-grade glioma is a predictor of hypermutation at recurrence. Neuro-Oncology, 2020, 22, 1580-1590.	1.2	55
54	Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathologica, 2018, 135, 485-488.	7.7	54

#	Article	IF	CITATIONS
55	Pituicytoma: Characterization of a Unique Neoplasm by Histology, Immunohistochemistry, Ultrastructure, and Array-Based Comparative Genomic Hybridization. Archives of Pathology and Laboratory Medicine, 2010, 134, 1063-1069.	2.5	51
56	Pediatric bithalamic gliomas have a distinct epigenetic signature and frequent EGFR exon 20 insertions resulting in potential sensitivity to targeted kinase inhibition. Acta Neuropathologica, 2020, 139, 1071-1088.	7.7	50
57	Temozolomide-induced hypermutation is associated with distant recurrence and reduced survival after high-grade transformation of low-grade <i>IDH</i> -mutant gliomas. Neuro-Oncology, 2021, 23, 1872-1884.	1.2	48
58	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
59	Recurrent KBTBD4 small in-frame insertions and absence of DROSHA deletion or DICER1 mutation differentiate pineal parenchymal tumor of intermediate differentiation (PPTID) from pineoblastoma. Acta Neuropathologica, 2019, 137, 851-854.	7.7	45
60	Probing the phosphatidylinositol 3â€kinase/mammalian target of rapamycin pathway in gliomas: A phase 2 study of everolimus for recurrent adult lowâ€grade gliomas. Cancer, 2017, 123, 4631-4639.	4.1	43
61	MR Studies of Glioblastoma Models Treated with Dual PI3K/mTOR Inhibitor and Temozolomide:Metabolic Changes Are Associated with Enhanced Survival. Molecular Cancer Therapeutics, 2016, 15, 1113-1122.	4.1	42
62	2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Research, 2018, 78, 2290-2304.	0.9	42
63	Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation. Npj Genomic Medicine, 2016, $1,\ldots$	3.8	41
64	Matrix regulators in neural stem cell functions. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2520-2525.	2.4	40
65	GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity. Oncotarget, 2016, 7, 79101-79116.	1.8	39
66	Dandy-Walker Malformation Complex. Obstetrics and Gynecology, 2006, 107, 685-693.	2.4	36
67	Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathologica, 2021, 141, 605-617.	7.7	36
68	Comprehensive analysis of diverse low-grade neuroepithelial tumors with FGFR1 alterations reveals a distinct molecular signature of rosette-forming glioneuronal tumor. Acta Neuropathologica Communications, 2020, 8, 151.	5.2	35
69	Clinical, radiologic, and genetic characteristics of histone H3 K27M-mutant diffuse midline gliomas in adults. Neuro-Oncology Advances, 2020, 2, vdaa142.	0.7	35
70	Mutant IDH1 gliomas downregulate phosphocholine and phosphoethanolamine synthesis in a 2-hydroxyglutarate-dependent manner. Cancer & Metabolism, 2018, 6, 3.	5.0	34
71	Mass Spectral Profiling of Glycosaminoglycans from Histological Tissue Surfaces. Analytical Chemistry, 2013, 85, 10984-10991.	6.5	33
72	Targeting a Plk1-Controlled Polarity Checkpoint in Therapy-Resistant Glioblastoma-Propagating Cells. Cancer Research, 2015, 75, 5355-5366.	0.9	33

#	Article	IF	CITATIONS
73	Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro-Oncology, 2018, 20, 632-641.	1.2	33
74	Activating NRF1-BRAF and ATG7-RAF1 fusions in anaplastic pleomorphic xanthoastrocytoma without BRAF p.V600E mutation. Acta Neuropathologica, 2016, 132, 757-760.	7.7	32
75	Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T cell response in low-grade gliomas. Journal of Clinical Investigation, 2022, 132, .	8.2	32
76	Protein Analysis of Glioblastoma Primary and Posttreatment Pairs Suggests a Mesenchymal Shift at Recurrence. Journal of Neuropathology and Experimental Neurology, 2016, 75, 925-935.	1.7	31
77	Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Molecular Cancer Research, 2017, 15, 1623-1633.	3.4	29
78	Targeting integrated epigenetic and metabolic pathways in lethal childhood PFA ependymomas. Science Translational Medicine, 2021, 13, eabc0497.	12.4	29
79	Magnetic resonance analysis of malignant transformation in recurrent glioma. Neuro-Oncology, 2016, 18, 1169-1179.	1.2	28
80	Novel Therapeutic Targets in the Brain Tumor Microenvironment. Oncotarget, 2012, 3, 568-575.	1.8	27
81	PKM2 uses control of HuR localization to regulate p27 and cell cycle progression in human glioblastoma cells. International Journal of Cancer, 2016, 139, 99-111.	5.1	25
82	Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas. PLoS ONE, 2019, 14, e0219724.	2.5	25
83	ATRX regulates glial identity and the tumor microenvironment in IDH-mutant glioma. Genome Biology, 2021, 22, 311.	8.8	25
84	A phase I trial of the CDK 4/6 inhibitor palbociclib in pediatric patients with progressive brain tumors: A Pediatric Brain Tumor Consortium study (PBTCâ€042). Pediatric Blood and Cancer, 2021, 68, e28879.	1.5	24
85	The evolution of alternative splicing in glioblastoma under therapy. Genome Biology, 2021, 22, 48.	8.8	23
86	Improving the noninvasive classification of glioma genetic subtype with deep learning and diffusion-weighted imaging. Neuro-Oncology, 2022, 24, 639-652.	1.2	22
87	In-Depth Matrisome and Glycoproteomic Analysis of Human Brain Glioblastoma Versus Control Tissue. Molecular and Cellular Proteomics, 2022, 21, 100216.	3.8	22
88	Recurrent non-canonical histone H3 mutations in spinal cord diffuse gliomas. Acta Neuropathologica, 2019, 138, 877-881.	7.7	21
89	Non-invasive assessment of telomere maintenance mechanisms in brain tumors. Nature Communications, 2021, 12, 92.	12.8	21
90	Proportional Upregulation of CD97 Isoforms in Glioblastoma and Glioblastoma-Derived Brain Tumor Initiating Cells. PLoS ONE, 2015, 10, e0111532.	2.5	19

#	Article	IF	CITATIONS
91	An oncolytic measles virus–sensitive Group 3 medulloblastoma model in immune-competent mice. Neuro-Oncology, 2018, 20, 1606-1615.	1.2	19
92	A Prognostic Gene-Expression Signature and Risk Score for Meningioma Recurrence After Resection. Neurosurgery, 2021, 88, 202-210.	1.1	19
93	5-ALA Fluorescence Is a Powerful Prognostic Marker during Surgery of Low-Grade Gliomas (WHO) Tj ETQq1 1 0.7	84314 rgB 3.7	ST / Overlock
94	Gliomas arising in the setting of Li-Fraumeni syndrome stratify into two molecular subgroups with divergent clinicopathologic features. Acta Neuropathologica, 2020, 139, 953-957.	7.7	18
95	SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis. Clinica Chimica Acta, 2015, 440, 72-78.	1.1	17
96	Diffuse midline gliomas with subclonal H3F3A K27M mutation and mosaic H3.3 K27M mutant protein expression. Acta Neuropathologica, 2017, 134, 961-963.	7.7	17
97	Association of Neurological Impairment on the Relative Benefit of Maximal Extent of Resection in Chemoradiation-Treated Newly Diagnosed Isocitrate Dehydrogenase Wild-Type Glioblastoma. Neurosurgery, 2022, 90, 124-130.	1.1	17
98	Patient-derived cells from recurrent tumors that model the evolution of IDH-mutant glioma. Neuro-Oncology Advances, 2020, 2, vdaa088.	0.7	16
99	Overcoming the inhibitory microenvironment surrounding oligodendrocyte progenitor cells following experimental demyelination. Nature Communications, 2021, 12, 1923.	12.8	16
100	Novel therapeutic targets in the brain tumor microenvironment. Oncotarget, 2012, 3, 568-75.	1.8	16
101	CXCL14 Promotes a Robust Brain Tumor-Associated Immune Response in Glioma. Clinical Cancer Research, 2022, 28, 2898-2910.	7.0	16
102	Signals that regulate the oncogenic fate of neural stem cells and progenitors. Experimental Neurology, 2014, 260, 56-68.	4.1	15
103	Comparative analyses identify molecular signature of MRI-classified SVZ-associated glioblastoma. Cell Cycle, 2017, 16, 765-775.	2.6	15
104	Characterization of Metabolic, Diffusion, and Perfusion Properties in GBM: Contrast-Enhancing versus Non-Enhancing Tumor. Translational Oncology, 2017, 10, 895-903.	3.7	15
105	The Development of Reduced Diffusion Following Bevacizumab Therapy Identifies Regions of Recurrent Disease in Patients with High-grade Glioma. Academic Radiology, 2016, 23, 1073-1082.	2.5	14
106	High density is a property of slow-cycling and treatment-resistant human glioblastoma cells. Experimental Cell Research, 2019, 378, 76-86.	2.6	14
107	PI3K/AKT/mTOR signaling pathway activity in IDH-mutant diffuse glioma and clinical implications. Neuro-Oncology, 2022, 24, 1471-1481.	1.2	14
108	Quantitative multi-modal MR imaging as a non-invasive prognostic tool for patients with recurrent low-grade glioma. Journal of Neuro-Oncology, 2017, 132, 171-179.	2.9	13

#	Article	IF	CITATIONS
109	Polysomy is associated with poor outcome in $1p/19q$ codeleted oligodendroglial tumors. Neuro-Oncology, 2019, 21, 1164-1174.	1.2	12
110	Temporospatial genomic profiling in glioblastoma identifies commonly altered core pathways underlying tumor progression. Neuro-Oncology Advances, 2020, 2, vdaa078.	0.7	12
111	Heparan Sulfate Synthesized by <i>Ext1</i> Regulates Receptor Tyrosine Kinase Signaling and Promotes Resistance to EGFR Inhibitors in GBM. Molecular Cancer Research, 2021, 19, 150-161.	3.4	12
112	Diffuse hemispheric glioma, H3 G34-mutant: Genomic landscape of a new tumor entity and prospects for targeted therapy. Neuro-Oncology, 2021, 23, 1974-1976.	1.2	12
113	Mechanisms of Resistance to EGFR Inhibition Reveal Metabolic Vulnerabilities in Human GBM. Molecular Cancer Therapeutics, 2019, 18, 1565-1576.	4.1	11
114	The effects of palbociclib in combination with radiation in preclinical models of aggressive meningioma. Neuro-Oncology Advances, 2021, 3, vdab085.	0.7	10
115	Prospective genomically guided identification of "early/evolving―and "undersampled―IDH-wildtype glioblastoma leads to improved clinical outcomes. Neuro-Oncology, 2022, 24, 1749-1762.	1.2	10
116	Safety Study: Intraventricular Injection of a Modified Oncolytic Measles Virus into Measles-Immune, hCD46-Transgenic, IFNαRko Mice. Human Gene Therapy Clinical Development, 2016, 27, 145-151.	3.1	9
117	Loss of H3K27 trimethylation by immunohistochemistry is frequent in oligodendroglioma, IDH-mutant and 1p/19q-codeleted, but is neither a sensitive nor a specific marker. Acta Neuropathologica, 2020, 139, 597-600.	7.7	9
118	Measuring Sulfatase Expression and Invasion in Glioblastoma. Methods in Molecular Biology, 2015, 1229, 507-516.	0.9	9
119	Relationship of In Vivo MR Parameters to Histopathological and Molecular Characteristics of Newly Diagnosed, Nonenhancing Lower-Grade Gliomas. Translational Oncology, 2018, 11, 941-949.	3.7	8
120	Practical Molecular Pathology and Histopathology of Embryonal Tumors. Surgical Pathology Clinics, 2015, 8, 73-88.	1.7	6
121	Synthesis and Screening of α-Xylosides in Human Glioblastoma Cells. Molecular Pharmaceutics, 2021, 18, 451-460.	4.6	5
122	Activating NTRK2 and ALK receptor tyrosine kinase fusions extend the molecular spectrum of pleomorphic xanthoastrocytomas of early childhood: a diagnostic overlap with infant-type hemispheric glioma. Acta Neuropathologica, 2022, 143, 283-286.	7.7	5
123	Targeted Next-Generation Sequencing Reveals Divergent Clonal Evolution in Components of Composite Pleomorphic Xanthoastrocytoma-Ganglioglioma. Journal of Neuropathology and Experimental Neurology, 2022, 81, 650-657.	1.7	5
124	Development of novel monoclonal antibodies and immunoassays for sensitive and specific detection of SULF1 endosulfatase. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129802.	2.4	3
125	Prognostic risk stratification of gliomas using deep learning in digital pathology images. Neuro-Oncology Advances, 2022, 4, .	0.7	3
126	PATH-09. CLINICAL CHARACTERISTICS OF ADULTS WITH H3 K27M-MUTANT GLIOMAS AT UCSF. Neuro-Oncology, 2018, 20, vi159-vi160.	1.2	2

#	Article	IF	CITATIONS
127	Immune cell analysis of pilocytic astrocytomas reveals sexually dimorphic brain region-specific differences in T-cell content. Neuro-Oncology Advances, 2021, 3, vdab068.	0.7	2
128	EGFR amplification status for clinical trial inclusion: where do we draw the line?. Neuro-Oncology, 2019, 21, 1215-1216.	1.2	1
129	Measuring Sulfatase Expression and Invasion in Glioblastoma. Methods in Molecular Biology, 2022, 2303, 415-425.	0.9	1
130	ATCT-32A PHASE II STUDY OF TEMOZOLOMIDE IN THE TREATMENT OF ADULT PATIENTS WITH SUPRATENTORIAL LOW-GRADE GLIOMA. Neuro-Oncology, 2015, 17, v8.4-v9.	1.2	0
131	CBIO-02. MUTANT IDH EXPRESSION DRIVES TERT PROMOTER REACTIVATION AS PART OF THE CELLULAR TRANSFORMATION PROCESS. Neuro-Oncology, 2016, 18, vi35-vi35.	1.2	0
132	MPTH-34. THE PROGNOSTIC VALUE OF POLYSOMY IN OLIGODENDROGLIAL TUMORS. Neuro-Oncology, 2016, 18, vi113-vi113.	1.2	0
133	NIMG-43. APPLICATION OF AN ADVANCED DIFFUSION-WEIGHTED MRI TECHNIQUE TO CHARACTERIZE GLIOMA MICROSTRUCTURE AND RELATIONSHIP TO HISTOPATHOLOGY. Neuro-Oncology, 2016, 18, vi134-vi134.	1.2	0
134	METB-11. HYPOXIA INDUCIBLE FACTOR 1α REPROGRAMS CHOLINE AND ETHANOLAMINE PHOSPHOLIPID METABOLISM IN MUTANT IDH1 GLIOMAS. Neuro-Oncology, 2017, 19, vi130-vi130.	1.2	0
135	PATH-08. THE IVY GLIOBLASTOMA PATIENT ATLAS - A NOVEL CLINICAL AND RADIO-GENOMICS RESOURCE FOR EARLY PHASE CLINICAL TRIAL DESIGN AND INTERPRETATION. Neuro-Oncology, 2018, 20, vi159-vi159.	1.2	0
136	ACTR-32. 5-ALA FLUORESCENCE IS A POWERFUL MARKER FOR DETECTION OF UNEXPECTED GLIOBLASTOMA TISSUE DURING SURGERY OF RADIOLOGICALLY SUSPECTED LOW-GRADE GLIOMAS. Neuro-Oncology, 2018, 20, vi18-vi18.	1,2	0
137	NIMG-11. DIFFERENTIATING TREATMENT-INDUCED EFFECTS FROM TRUE RECURRENT HIGH GRADE GLIOMA USING MULTIPARAMETRIC MRI TECHNIQUES. Neuro-Oncology, 2018, 20, vi177-vi178.	1.2	О
138	NIMG-42. RECURRENT TUMOR AND TREATMENT-INDUCED EFFECTS HAVE DIFFERENT MR SIGNATURES IN CONTRAST ENHANCING AND NON-ENHANCING LESIONS OF HIGH-GRADE GLIOMAS. Neuro-Oncology, 2019, 21, vi170-vi170.	1.2	0
139	PATH-38. ROSETTE-FORMING GLIONEURONAL TUMOR IS DEFINED BY FGFR1 ACTIVATING ALTERATIONS WITH FREQUENT ACCOMPANYING PI3K AND MAPK PATHWAY MUTATIONS. Neuro-Oncology, 2019, 21, vi151-vi152.	1.2	0
140	IMMU-11. SPATIOTEMPORAL IMMUNOGENOMIC ANALYSIS OF THE T-CELL REPERTOIRE IN IDH-MUTANT LOWER GRADE GLIOMAS. Neuro-Oncology, 2019, 21, vi121-vi121.	1.2	0
141	GENE-47. A 3D ATLAS TO EVALUATE THE SPATIAL PATTERNING OF GENETIC ALTERATIONS AND TUMOR CELL STATES IN GLIOMA. Neuro-Oncology, 2019, 21, vi107-vi108.	1.2	О
142	ACTR-42. PI3K/mTOR PATHWAY ACTIVATION SELECTED PHASE II STUDY OF EVEROLIMUS (RAD001) WITH AND WITHOUT TEMOZOLOMIDE IN THE TREATMENT OF ADULT PATIENTS WITH SUPRATENTORIAL LOW-GRADE GLIOMA [NCT NCT02023905]. Neuro-Oncology, 2019, 21, vi22-vi23.	1.2	0
143	Novel regulation of PDGFRα activation in Glioblastoma. FASEB Journal, 2012, 26, 479.7.	0.5	0
144	Reply to Stummer, W.; Thomas, C. Comment on "Hosmann et al. 5-ALA Fluorescence Is a Powerful Prognostic Marker during Surgery of Low-Grade Gliomas (WHO Grade II)—Experience at Two Specialized Centers. Cancers 2021, 13, 2540― Cancers, 2021, 13, 5705.	3.7	0

#	Article	IF	CITATIONS
145	Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas. , 2019, 14, e0219724.		O
146	Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas., 2019, 14, e0219724.		0
147	Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas. , 2019, 14, e0219724.		O
148	Multiscale, multimodal analysis of tumor heterogeneity in IDH1 mutant vs wild-type diffuse gliomas., 2019, 14, e0219724.		0