Gareth E Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/420890/publications.pdf

Version: 2024-02-01

114 papers 7,963 citations

47006 47 h-index 51608 86 g-index

123 all docs

123
docs citations

123 times ranked

8981 citing authors

#	Article	IF	CITATIONS
1	Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Science Advances, 2022, 8, eabm3471.	10.3	19
2	Combined AFM and super-resolution localisation microscopy: Investigating the structure and dynamics of podosomes. European Journal of Cell Biology, 2020, 99, 151106.	3.6	20
3	Forces and constraints controlling podosome assembly and disassembly. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180228.	4.0	17
4	A mechano-signalling network linking microtubules, myosin IIA filaments and integrin-based adhesions. Nature Materials, 2019 , 18 , 638 - 649 .	27.5	129
5	PAK4 Kinase Activity Plays a Crucial Role in the Podosome Ring of Myeloid Cells. Cell Reports, 2019, 29, 3385-3393.e6.	6.4	20
6	Artifact-free high-density localization microscopy analysis. Nature Methods, 2018, 15, 689-692.	19.0	79
7	The Rényi divergence enables accurate and precise cluster analysis for localization microscopy. Bioinformatics, 2018, 34, 4102-4111.	4.1	5
8	Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. Journal of Cell Biology, 2017, 216, 181-197.	5.2	46
9	BCR–ABL1-induced downregulation of WASP in chronic myeloid leukemia involves epigenetic modification and contributes to malignancy. Cell Death and Disease, 2017, 8, e3114-e3114.	6.3	15
10	Investigation of podosome ring protein arrangement using localization microscopy images. Methods, 2017, 115, 9-16.	3.8	10
11	LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP. Scientific Reports, 2016, 6, 24925.	3.3	54
12	Significance of kinase activity in the dynamic invadosome. European Journal of Cell Biology, 2016, 95, 483-492.	3.6	19
13	Podoplanin mediates ECM degradation by squamous carcinoma cells through control of invadopodia stability. Oncogene, 2015, 34, 4531-4544.	5.9	67
14	Integrin-beta3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nature Communications, 2015, 6, 8672.	12.8	75
15	Vinculin Binding Angle in Podosomes Revealed by High Resolution Microscopy. PLoS ONE, 2014, 9, e88251.	2.5	24
16	Tyrosine phosphorylation of WIP releases bound WASP and impairs podosome assembly in macrophages. Journal of Cell Science, 2014, 128, 251-65.	2.0	18
17	WIP is necessary for matrix invasion by breast cancer cells. European Journal of Cell Biology, 2014, 93, 413-423.	3.6	18
18	Integrin linked kinase (ILK) regulates podosome maturation and stability in dendritic cells. International Journal of Biochemistry and Cell Biology, 2014, 50, 47-54.	2.8	12

#	Article	IF	CITATIONS
19	Imaging cells at the nanoscale. International Journal of Biochemistry and Cell Biology, 2013, 45, 1669-1678.	2.8	36
20	Integrin-Matrix Clusters Form Podosome-like Adhesions in the Absence of Traction Forces. Cell Reports, 2013, 5, 1456-1468.	6.4	122
21	Inhibition of Contractility and RhoA Deactivation Trigger Podosome Formation. Biophysical Journal, 2013, 104, 143a.	0.5	0
22	Imaging haematopoietic cells recruitment to an acute wound <i>in vivo</i> identifies a role for câ€Met signalling. Journal of Microscopy, 2013, 250, 200-209.	1.8	8
23	PAK4 kinase activity and somatic mutation promote carcinoma cell motility and influence inhibitor sensitivity. Oncogene, 2013, 32, 2114-2120.	5.9	42
24	ImageJ plug-in for Bayesian analysis of blinking and bleaching. Nature Methods, 2013, 10, 97-98.	19.0	37
25	Megakaryocytes assemble podosomes that degrade matrix and protrude through basement membrane. Blood, 2013, 121, 2542-2552.	1.4	87
26	WIP Regulates Persistence of Cell Migration and Ruffle Formation in Both Mesenchymal and Amoeboid Modes of Motility. PLoS ONE, 2013, 8, e70364.	2.5	23
27	Nox2 Is Required for Macrophage Chemotaxis towards CSF-1. PLoS ONE, 2013, 8, e54869.	2.5	24
28	WIP: WASP-interacting proteins at invadopodia and podosomes. European Journal of Cell Biology, 2012, 91, 869-877.	3.6	37
29	Bayesian localization microscopy reveals nanoscale podosome dynamics. Nature Methods, 2012, 9, 195-200.	19.0	399
30	Tyrosine phosphorylation of WASP promotes calpain-mediated podosome disassembly. Haematologica, 2012, 97, 687-691.	3.5	16
31	Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. Journal of Experimental Medicine, 2012, 209, 1219-1234.	8.5	401
32	\hat{l}^21 integrins regulate fibroblast chemotaxis through control of N-WASP stability. EMBO Journal, 2011, 30, 1705-1718.	7.8	40
33	Role of WASP in cell polarity and podosome dynamics of myeloid cells. European Journal of Cell Biology, 2011, 90, 198-204.	3.6	52
34	The cortactin-binding domain of WIP is essential for podosome formation and extracellular matrix degradation by murine dendritic cells. European Journal of Cell Biology, 2011, 90, 213-223.	3.6	35
35	Signalling to cancer cell invasion through PAK family kinases. Frontiers in Bioscience - Landmark, 2011, 16, 849.	3.0	82
36	HGF-Induced DU145 Cell Scatter Assay. Methods in Molecular Biology, 2011, 769, 31-40.	0.9	18

#	Article	IF	Citations
37	The emerging importance of group II PAKs. Biochemical Journal, 2010, 425, 465-473.	3.7	121
38	PAK4: a pluripotent kinase that regulates prostate cancer cell adhesion. Journal of Cell Science, 2010, 123, 1663-1673.	2.0	88
39	Podoplanin Associates with CD44 to Promote Directional Cell Migration. Molecular Biology of the Cell, 2010, 21, 4387-4399.	2.1	115
40	Tyrosine Phosphorylation of WASP Promotes Calpain-Mediated Podosome Disassembly In Myeloid Cells Blood, 2010, 116, 1498-1498.	1.4	17
41	Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15738-15743.	7.1	51
42	WASP and WIP regulate podosomes in migrating leukocytes. Journal of Microscopy, 2008, 231, 494-505.	1.8	47
43	Quantifying cell–matrix adhesion dynamics in living cells using interference reflection microscopy. Journal of Microscopy, 2008, 232, 73-81.	1.8	43
44	A PAK4–LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cellular Signalling, 2008, 20, 1320-1328.	3.6	121
45	Improvement of Migratory Defects in a Murine Model of Wiskott–Aldrich Syndrome Gene Therapy. Molecular Therapy, 2008, 16, 836-844.	8.2	35
46	ROCK1 and LIMK2 Interact in Spread but Not Blebbing Cancer Cells. PLoS ONE, 2008, 3, e3398.	2.5	18
47	Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. Journal of Experimental Medicine, 2007, 204, 2213-2224.	8.5	158
48	$PI(3)K\hat{l}^3$ has an important context-dependent role in neutrophil chemokinesis. Nature Cell Biology, 2007, 9, 86-91.	10.3	233
49	Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex. Nature Cell Biology, 2007, 9, 1046-1056.	10.3	229
50	WASP-interacting protein (WIP): working in polymerisation and much more. Trends in Cell Biology, 2007, 17, 555-562.	7.9	85
51	Cell motility assays., 2007,, 101-109.		0
52	Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. Journal of Cell Biology, 2007, 178, i11-i11.	5.2	0
53	A role for GATA factors in Xenopus gastrulation movements. Mechanisms of Development, 2006, 123, 730-745.	1.7	20
54	WIP: A multifunctional protein involved in actin cytoskeleton regulation. European Journal of Cell Biology, 2006, 85, 295-304.	3.6	49

#	Article	IF	Citations
55	The leukocyte podosome. European Journal of Cell Biology, 2006, 85, 151-157.	3.6	135
56	WIP Regulates the Stability and Localization of WASP to Podosomes in Migrating Dendritic Cells. Current Biology, 2006, 16, 2337-2344.	3.9	114
57	PTEN couples Sema3A signalling to growth cone collapse. Journal of Cell Science, 2006, 119, 951-957.	2.0	124
58	Inhibition of calpain stabilises podosomes and impairs dendritic cell motility. Journal of Cell Science, 2006, 119, 2375-2385.	2.0	115
59	Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood, 2006, 108, 2182-2189.	1.4	200
60	Impaired dendritic-cell homing in vivo in the absence of Wiskott-Aldrich syndrome protein. Blood, 2005, 105, 1590-1597.	1.4	110
61	P-Rex1 Regulates Neutrophil Function. Current Biology, 2005, 15, 1867-1873.	3.9	161
62	Rho family GTPases are activated during HGF-stimulated prostate cancer-cell scattering. Cytoskeleton, 2005, 62, 180-194.	4.4	37
63	The tyrosine phosphatase DEP-1 induces cytoskeletal rearrangements, aberrant cell-substratum interactions and a reduction in cell proliferation. Journal of Cell Science, 2004, 117, 609-618.	2.0	35
64	WASp deficiency in mice results in failure to form osteoclast sealing zones and defects in bone resorption. Blood, 2004, 103, 3552-3561.	1.4	111
65	Cell motility under the microscope: Vorsprung durch Technik. Nature Reviews Molecular Cell Biology, 2004, 5, 667-672.	37.0	31
66	Wiskott-Aldrich syndrome protein and the cytoskeletal dynamics of dendritic cells. Journal of Pathology, 2004, 204, 460-469.	4.5	86
67	Maturation of DC is associated with changes in motile characteristics and adherence. Cytoskeleton, 2004, 57, 118-132.	4.4	137
68	Polarised Migration: Cofilin Holds the Front. Current Biology, 2003, 13, R128-R130.	3.9	28
69	Requirement for PI 3-kinase \hat{I}^3 in macrophage migration to MCP-1 and CSF-1. Experimental Cell Research, 2003, 290, 120-131.	2.6	94
70	GPI-anchored uPAR requires Endo180 for rapid directional sensing during chemotaxis. Journal of Cell Biology, 2003, 162, 789-794.	5.2	67
71	Restoration of podosomes and chemotaxis in Wiskott–Aldrich syndrome macrophages following induced expression of WASp. International Journal of Biochemistry and Cell Biology, 2002, 34, 806-815.	2.8	97
72	The involvement of galectin-1 in skeletal muscle determination, differentiation and regeneration. Glycoconjugate Journal, 2002, 19, 615-619.	2.7	38

#	Article	IF	CITATIONS
73	N-WASP activation by a \hat{l}^21 -integrin-dependent mechanism supports PI3K-independent chemotaxis stimulated by urokinase-type plasminogen activator. Journal of Cell Science, 2002, 115, 699-711.	2.0	60
74	The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro. Journal of Cell Science, 2002, 115, 355-66.	2.0	62
75	N-WASP activation by a beta1-integrin-dependent mechanism supports PI3K-independent chemotaxis stimulated by urokinase-type plasminogen activator. Journal of Cell Science, 2002, 115, 699-711.	2.0	48
76	Configuration of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and differentiation. Blood, 2001, 98, 1142-1149.	1.4	300
77	Coordination of cell polarization and migration by the Rho family GTPases requires Src tyrosine kinase activity. Current Biology, 2001, 11, 1836-1846.	3.9	175
78	Rho GTPases and cell migration: Measurement of macrophage chemotaxis. Methods in Enzymology, 2000, 325, 449-462.	1.0	14
79	The Wiskott-Aldrich syndrome: disordered actin dynamics in haematopoietic cells. Immunological Reviews, 2000, 178, 118-128.	6.0	45
80	Distinct PI(3)Ks mediate mitogenic signalling and cell migration in macrophages. Nature Cell Biology, 1999, 1, 69-71.	10.3	267
81	Michael Abercrombie: the pioneer ethologist of cells. Trends in Cell Biology, 1998, 8, 124-126.	7.9	12
82	Intrinsic dendritic cell abnormalities in Wiskott-Aldrich syndrome. European Journal of Immunology, 1998, 28, 3259-3267.	2.9	109
83	Chemotaxis of macrophages is abolished in the Wiskottâ€Aldrich syndrome. British Journal of Haematology, 1998, 101, 659-665.	2.5	225
84	Is Wiskott–Aldrich syndrome a cell trafficking disorder?. Trends in Immunology, 1998, 19, 537-539.	7.5	39
85	Retinoic acid as a chemotactic molecule in neuronal development. International Journal of Developmental Neuroscience, 1998, 16, 317-322.	1.6	44
86	The Rho GTPases in Macrophage Motility and Chemotaxis. Cell Adhesion and Communication, 1998, 6, 237-245.	1.7	76
87	A Role for Cdc42 in Macrophage Chemotaxis. Journal of Cell Biology, 1998, 141, 1147-1157.	5.2	486
88	RhoE Regulates Actin Cytoskeleton Organization and Cell Migration. Molecular and Cellular Biology, 1998, 18, 4761-4771.	2.3	191
89	Intrinsic dendritic cell abnormalities in Wiskott-Aldrich syndrome. European Journal of Immunology, 1998, 28, 3259-3267.	2.9	1
90	Proliferation of Murine Myoblasts as Measured by Bromodeoxyuridine Incorporation., 1997, 75, 349-356.		1

#	Article	IF	CITATIONS
91	Visualization of Cell Replication Using Antibody to Proliferating Cell Nuclear Antigen. , 1997, 75, 341-348.		10
92	Establishment, Maintenance, and Cloning of Human Dermal Fibroblasts., 1997, 75, 13-22.		11
93	Utrophin-dystroglycan complex in membranes of adherent cultured cells. , 1996, 33, 163-174.		48
94	Conversion of dermal fibroblasts to a myogenic lineage is induced by a soluble factor derived from myoblasts. Journal of Cellular Biochemistry, 1996, 61, 363-374.	2.6	29
95	Calreticulin Binding Affinity for Glycosylated Laminin. Journal of Biological Chemistry, 1996, 271, 7891-7894.	3.4	40
96	Evidence for a utrophin-glycoprotein complex in cultured cell lines and a possible role in cell adhesion. Biochemical Society Transactions, 1995, 23, 398S-398S.	3.4	5
97	Synthesis and cell-adhesion properties of cyclo(-Arg-Gly-Asp-Ser-Lys-), a constrained analogue of the active domain of fibronectin. Journal of the Chemical Society Perkin Transactions 1, 1994, , 2011.	0.9	4
98	Synthetic peptide mimics of the active domain of fibronectin. Biochemical Society Transactions, 1990, 18, 1326-1328.	3.4	2
99	Requirements for the Ca2+-independent component in the initial intercellular adhesion of C2 myoblasts Journal of Cell Biology, 1988, 107, 2307-2317.	5.2	18
100	Behaviour of Duchenne dystrophy fibroblasts in collagen gels. Cell Biology International Reports, 1986, 10, 509-515.	0.6	1
101	Letters to the Editor. Muscle and Nerve, 1986, 9, 84-86.	2.2	1
102	The effect of monensin on cell aggregation of normal and dystrophic human skin fibroblasts. Experimental Cell Research, 1985, 159, 540-545.	2.6	9
103	Adhesive interactions between normal and dystrophic human skin fibroblasts. Journal of the Neurological Sciences, 1985, 69, 207-221.	0.6	6
104	Monensin inhibits initial spreading of cultured human fibroblasts. Nature, 1983, 305, 315-317.	27.8	36
105	Membrane abnormalities in Duchenne muscular dystrophy. Journal of the Neurological Sciences, 1983, 58, 159-174.	0.6	57
106	Freeze-fracture analysis of plasma membranes in Duchenne muscular dystrophy. Journal of the Neurological Sciences, 1983, 58, 185-193.	0.6	8
107	Reduced adhesiveness between skin fibroblasts from patients with Duchenne muscular dystrophy. Journal of the Neurological Sciences, 1979, 43, 465-470.	0.6	42
108	A chymotrypsin-sensitive step in the development of Dictyostelium discoideum. Nature, 1978, 274, 400-401.	27.8	10

#	Article	IF	CITATIONS
109	Regulation of the adhesive associations between cells. Cell Biology International Reports, 1977, 1, 271-273.	0.6	2
110	A requirement for filopodia in the adhesion of pre-aggregative cells of Dictyostelium discoideum. Experimental Cell Research, 1977, 107, 451-455.	2.6	6
111	Distilled glutaraldehyde: its use in an improved fixation regime for cell suspensions. Journal of Microscopy, 1975, 105, 325-334.	1.8	8
112	A simple method of preparing a cell suspension for scanning electron microscopy. Experientia, 1975, 31, 1244-1246.	1.2	8
113	Cytochalasin B inhibits stabilisation of adhesions in fast-aggregating cell systems. Nature, 1975, 253, 632-634.	27.8	15
114	Intercellular adhesion: Modification by dielectric properties of the medium. Journal of Membrane Biology, 1974, 16, 297-312.	2.1	14