Ching-Hua Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4208522/publications.pdf Version: 2024-02-01

		22153	29157
141	11,563	59	104
papers	citations	h-index	g-index
143	143	143	8055
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Flume and single-pass washing systems for fresh-cut produce processing: Disinfection by-products evaluation. Food Control, 2022, 133, 108578.	5.5	10
2	Ferrate(VI)-peracetic acid oxidation process: Rapid degradation of pharmaceuticals in water. Chemical Engineering Journal, 2022, 429, 132384.	12.7	45
3	Enhanced formation of trihalomethane disinfection byproducts from halobenzoquinones under combined UV/chlorine conditions. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	5
4	Visible Light-Induced Catalyst-Free Activation of Peroxydisulfate: Pollutant-Dependent Production of Reactive Species. Environmental Science & Technology, 2022, 56, 2626-2636.	10.0	58
5	Occurrence of per- and polyfluoroalkyl substances in water: a review. Environmental Science: Water Research and Technology, 2022, 8, 1136-1151.	2.4	6
6	Enhanced Degradation of Micropollutants in a Peracetic Acid–Fe(III) System with Picolinic Acid. Environmental Science & Technology, 2022, 56, 4437-4446.	10.0	30
7	Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Environmental Science & Technology, 2022, 56, 5150-5160.	10.0	5
8	Fast coupling and detoxification of aqueous halobenzoquinones by extracellular nucleophiles: The relationship among structures, pathways and toxicity. Chemical Engineering Journal, 2022, 438, 135525.	12.7	5
9	A review on treatment of disinfection byproduct precursors by biological activated carbon process. Chinese Chemical Letters, 2022, 33, 4495-4504.	9.0	23
10	Unexpected Role of Nitrite in Promoting Transformation of Sulfonamide Antibiotics by Peracetic Acid: Reactive Nitrogen Species Contribution and Harmful Disinfection Byproduct Formation Potential. Environmental Science & Technology, 2022, 56, 1300-1309.	10.0	33
11	Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. Environmental Science & Technology, 2022, 56, 30-47.	10.0	63
12	Capillary-Assisted Fabrication of Thin-Film Nanocomposite Membranes for Improved Solute–Solute Separation. Environmental Science & Technology, 2022, 56, 5849-5859.	10.0	20
13	Overlooked Role of Chromium(V) and Chromium(IV) in Chromium Redox Reactions of Environmental Importance. ACS ES&T Water, 2022, 2, 932-942.	4.6	13
14	Sequential Application of Peracetic Acid and UV Irradiation (PAA–UV/PAA) for Improved Bacterial Inactivation in Fresh-Cut Produce Wash Water. ACS ES&T Water, 2022, 2, 1247-1253.	4.6	5
15	Interaction of peracetic acid with chromium(III): Understanding degradation of coexisting organic pollutants in water. Journal of Hazardous Materials, 2022, 438, 129537.	12.4	9
16	Reactivity of Peracetic Acid with Organic Compounds: A Critical Review. ACS ES&T Water, 2021, 1, 15-33.	4.6	124
17	Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Research, 2021, 188, 116479.	11.3	284
18	Simultaneous and precise recovery of lithium and boron from salt lake brine by capacitive deionization with oxygen vacancy-rich CoP/Co3O4-graphene aerogel. Chemical Engineering Journal, 2021, 420, 127661.	12.7	24

#	Article	IF	CITATIONS
19	Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure. Bioresource Technology, 2021, 322, 124534.	9.6	38
20	Effect of Metal Ions on Oxidation of Micropollutants by Ferrate(VI): Enhancing Role of Fe ^{IV} Species. Environmental Science & Technology, 2021, 55, 623-633.	10.0	84
21	Ferrate(VI) Oxidation of Pharmaceuticals in Hydrolyzed Urine: Enhancement by Creatinine and the Role of Fe(IV). ACS ES&T Water, 2021, 1, 969-979.	4.6	38
22	Mass transport release of heavy metal oxyanions from solidified/stabilized co-disposed flue gas desulfurization brine and coal fly ash monoliths. Environmental Science and Pollution Research, 2021, 28, 29945-29957.	5.3	2
23	Revelation of Fe(V)/Fe(IV) Involvement in the Fe(VI)–ABTS System: Kinetic Modeling and Product Analysis. Environmental Science & Technology, 2021, 55, 3976-3987.	10.0	28
24	Interfacial Solar Distillation for Freshwater Production: Fate of Volatile and Semivolatile Organic Contaminants. Environmental Science & amp; Technology, 2021, 55, 6248-6256.	10.0	37
25	Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Environmental Science & Technology, 2021, 55, 9209-9220.	10.0	32
26	Peracetic Acid–Ruthenium(III) Oxidation Process for the Degradation of Micropollutants in Water. Environmental Science & Technology, 2021, 55, 9150-9160.	10.0	85
27	Generation of Iron(IV) in the Oxidation of Amines by Ferrate(VI): Theoretical Insight and Implications in Oxidizing Pharmaceuticals. ACS ES&T Water, 2021, 1, 1932-1940.	4.6	11
28	Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: A critical review. Water Research, 2021, 202, 117463.	11.3	81
29	Pilot testing of direct and indirect potable water reuse using multi-stage ozone-biofiltration without reverse osmosis. Water Research, 2020, 169, 115178.	11.3	30
30	Solidification/stabilization of flue gas desulfurization brine and coal fly ash for heavy metals and chloride immobilization: Effects of S/S conditions and zero-valent-iron pretreatment. Journal of Hazardous Materials, 2020, 384, 121463.	12.4	18
31	Synergistic activation of peroxydisulfate with magnetite and copper ion at neutral condition. Water Research, 2020, 186, 116371.	11.3	16
32	Anaerobic Dehalogenation by Reduced Aqueous Biochars. Environmental Science & Technology, 2020, 54, 15142-15150.	10.0	11
33	Modeling the Kinetics of UV/Peracetic Acid Advanced Oxidation Process. Environmental Science & Technology, 2020, 54, 7579-7590.	10.0	131
34	Simultaneous quantification of peracetic acid and hydrogen peroxide in different water matrices using HPLC-UV. Chemosphere, 2020, 257, 127229.	8.2	23
35	Cobalt/Peracetic Acid: Advanced Oxidation of Aromatic Organic Compounds by Acetylperoxyl Radicals. Environmental Science & Technology, 2020, 54, 5268-5278.	10.0	200
36	Significant Effect of Evaporation Process on the Reaction of Sulfamethoxazole with Manganese Oxide. Environmental Science & Technology, 2020, 54, 4856-4864.	10.0	17

#	Article	IF	CITATIONS
37	Inactivation of Bacteria by Peracetic Acid Combined with Ultraviolet Irradiation: Mechanism and Optimization. Environmental Science & Technology, 2020, 54, 9652-9661.	10.0	60
38	Revelation of ferrate(VI) unimolecular decay under alkaline conditions: Investigation of involvement of Fe(IV) and Fe(V) species. Chemical Engineering Journal, 2020, 388, 124134.	12.7	40
39	Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus faecalis in municipal wastewater. Water Research, 2020, 173, 115552.	11.3	63
40	Enhanced ferrate(VI) oxidation of micropollutants in water by carbonaceous materials: Elucidating surface functionality. Chemical Engineering Journal, 2020, 398, 125607.	12.7	60
41	Advanced Oxidation Process with Peracetic Acid and Fe(II) for Contaminant Degradation. Environmental Science & Technology, 2019, 53, 13312-13322.	10.0	294
42	Complexation Enhances Cu(II)-Activated Peroxydisulfate: A Novel Activation Mechanism and Cu(III) Contribution. Environmental Science & Technology, 2019, 53, 11774-11782.	10.0	119
43	Silver Nanowire-Modified Filter with Controllable Silver Ion Release for Point-of-Use Disinfection. Environmental Science & Technology, 2019, 53, 7504-7512.	10.0	26
44	Analytical methods for conventional and emerging disinfection by-products in fresh-cut produce. Food Chemistry, 2019, 291, 30-37.	8.2	13
45	Removal of heavy metals by aged zero-valent iron from flue-gas-desulfurization brine under high salt and temperature conditions. Journal of Hazardous Materials, 2019, 373, 572-579.	12.4	21
46	Hydrophobic sorption behaviors of 17β-Estradiol on environmental microplastics. Chemosphere, 2019, 226, 726-735.	8.2	148
47	Oxidation of Pharmaceuticals by Ferrate(VI) in Hydrolyzed Urine: Effects of Major Inorganic Constituents. Environmental Science & Technology, 2019, 53, 5272-5281.	10.0	109
48	Oxidation of Sulfonamide Antibiotics of Six-Membered Heterocyclic Moiety by Ferrate(VI): Kinetics and Mechanistic Insight into SO ₂ Extrusion. Environmental Science & Technology, 2019, 53, 2695-2704.	10.0	95
49	Effect of environmental factors on the oxidative transformation of cephalosporin antibiotics by manganese dioxides. Environmental Sciences: Processes and Impacts, 2019, 21, 692-700.	3.5	9
50	Removal of pharmaceuticals and personal care products by two-stage biofiltration for drinking water treatment. Science of the Total Environment, 2019, 664, 240-248.	8.0	63
51	Formation of disinfection byproducts in wash water and lettuce by washing with sodium hypochlorite and peracetic acid sanitizers. Food Chemistry: X, 2019, 1, 100003.	4.3	54
52	Selective Transformation of β-Lactam Antibiotics by Peroxymonosulfate: Reaction Kinetics and Nonradical Mechanism. Environmental Science & Technology, 2018, 52, 1461-1470.	10.0	143
53	Analysis of 40 conventional and emerging disinfection by-products in fresh-cut produce wash water by modified EPA methods. Food Chemistry, 2018, 256, 319-326.	8.2	25
54	Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environmental Science: Nano, 2018, 5, 27-47.	4.3	211

#	Article	IF	CITATIONS
55	Oxidation of amino acids by peracetic acid: Reaction kinetics, pathways and theoretical calculations. Water Research X, 2018, 1, 100002.	6.1	75
56	Rapid Disinfection by Peracetic Acid Combined with UV Irradiation. Environmental Science and Technology Letters, 2018, 5, 400-404.	8.7	58
57	Substructure Reactivity Affecting the Manganese Dioxide Oxidation of Cephalosporins. Environmental Science & Technology, 2018, 52, 9188-9195.	10.0	29
58	PPCP Degradation by Chlorine–UV Processes in Ammoniacal Water: New Reaction Insights, Kinetic Modeling, and DBP Formation. Environmental Science & Technology, 2018, 52, 7833-7841.	10.0	80
59	Quantification of hazardous pollutants in biological systems. , 2018, , 069-122.		Ο
60	Long-term broiler litter amendments can alter the soil's capacity to sorb monensin. Environmental Science and Pollution Research, 2017, 24, 13466-13473.	5.3	5
61	Oxidation of \hat{l}^2 -lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation. Water Research, 2017, 123, 153-161.	11.3	133
62	Sorption of Se(IV) and Se(VI) to coal fly ash/cement composite: Effect of Ca2+ and high ionic strength. Chemical Geology, 2017, 464, 76-83.	3.3	20
63	Sources of pharmaceuticals and personal care products in swimming pools. Journal of Water and Health, 2017, 15, 829-833.	2.6	20
64	UV/Peracetic Acid for Degradation of Pharmaceuticals and Reactive Species Evaluation. Environmental Science & amp; Technology, 2017, 51, 14217-14224.	10.0	274
65	Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Research, 2017, 123, 224-235.	11.3	79
66	Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. Chemosphere, 2017, 166, 311-322.	8.2	55
67	pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing. Journal of Integrative Agriculture, 2017, 16, 2914-2923.	3.5	41
68	Transformation of halobenzoquinones with the presence of amino acids in water: Products, pathways and toxicity. Water Research, 2017, 122, 299-307.	11.3	36
69	Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H 2 O 2 and UV/PDS. Water Research, 2016, 103, 283-292.	11.3	164
70	Estimation of environmentally relevant chemical properties of veterinary ionophore antibiotics. Environmental Science and Pollution Research, 2016, 23, 18353-18361.	5.3	8
71	Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions. Environmental Science & Technology, 2016, 50, 13265-13273.	10.0	192
72	Multiple Roles of Cu(II) in Catalyzing Hydrolysis and Oxidation of β-Lactam Antibiotics. Environmental Science & Technology, 2016, 50, 12156-12165.	10.0	62

#	Article	IF	CITATIONS
73	Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 2016, 159, 526-535.	8.2	180
74	Immobilization of Heavy Metals by Solidification/Stabilization of Co-Disposed Flue Gas Desulfurization Brine and Coal Fly Ash. Energy & Fuels, 2016, 30, 5042-5051.	5.1	34
75	Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation. Environmental Science & Technology, 2016, 50, 145-153.	10.0	145
76	Inactivation of <i>Escherichia coli</i> , Bacteriophage MS2, and <i>Bacillus</i> Spores under UV/H ₂ O ₂ and UV/Peroxydisulfate Advanced Disinfection Conditions. Environmental Science & Technology, 2016, 50, 4448-4458.	10.0	194
77	UV/H ₂ O ₂ and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: Transformation Products and Toxicity. Environmental Science & Technology, 2016, 50, 2573-2583.	10.0	181
78	Effects of combined UV and chlorine treatment on chloroform formation from triclosan. Chemosphere, 2016, 150, 715-722.	8.2	41
79	Perfluorooctanoic Acid Degradation Using UV–Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environmental Science & Technology, 2016, 50, 772-781.	10.0	294
80	Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation. Chemical Engineering Journal, 2016, 283, 730-739.	12.7	40
81	Transformation, products, and pathways of chlorophenols via electro-enzymatic catalysis: How to control toxic intermediate products. Chemosphere, 2016, 144, 1674-1681.	8.2	16
82	Alum and Rainfall Effects on Ionophores in Runoff from Surface-Applied Broiler Litter. Journal of Environmental Quality, 2015, 44, 1657-1666.	2.0	4
83	Oxidative Transformation of Controlled Substances by Manganese Dioxide. Scientific World Journal, The, 2015, 2015, 1-9.	2.1	2
84	Stacking Time and Aluminum Sulfate Effects on Polyether Ionophores in Broiler Litter. Journal of Environmental Quality, 2015, 44, 1923-1929.	2.0	5
85	Degradation of Pharmaceuticals and Metabolite in Synthetic Human Urine by UV, UV/H ₂ O ₂ , and UV/PDS. Environmental Science & Technology, 2015, 49, 3056-3066.	10.0	397
86	Rejection and adsorption of trace pharmaceuticals by coating a forward osmosis membrane with TiO 2. Chemical Engineering Journal, 2015, 279, 904-911.	12.7	67
87	Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species — Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana. Science of the Total Environment, 2015, 532, 540-547.	8.0	55
88	Cu(II)–Catalyzed Transformation of Benzylpenicillin Revisited: The Overlooked Oxidation. Environmental Science & Technology, 2015, 49, 4218-4225.	10.0	56
89	Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor. Water Research, 2015, 87, 127-136.	11.3	57
90	Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. Water Research, 2015, 68, 510-521.	11.3	64

#	Article	IF	CITATIONS
91	Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation. Chemosphere, 2015, 119, 1255-1261.	8.2	100
92	N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. Journal of Hazardous Materials, 2015, 282, 133-140.	12.4	66
93	Inhibition and Biotransformation Potential of Veterinary Ionophore Antibiotics under Different Redox Conditions. Environmental Science & Technology, 2014, 48, 13146-13154.	10.0	12
94	Effects of Combined UV and Chlorine Treatment on the Formation of Trichloronitromethane from Amine Precursors. Environmental Science & amp; Technology, 2014, 48, 2697-2705.	10.0	89
95	The Presence of Pharmaceuticals and Personal Care Products in Swimming Pools. Environmental Science and Technology Letters, 2014, 1, 495-498.	8.7	52
96	Photodegradation of Veterinary Ionophore Antibiotics under UV and Solar Irradiation. Environmental Science & Technology, 2014, 48, 13188-13196.	10.0	52
97	Biodegradation of Veterinary Ionophore Antibiotics in Broiler Litter and Soil Microcosms. Environmental Science & Technology, 2014, 48, 2724-2731.	10.0	43
98	Year-long evaluation on the occurrence and fate ofÂpharmaceuticals, personal care products, andÂendocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 2014, 51, 266-276.	11.3	345
99	Kinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UV/H ₂ O ₂ . Environmental Science & Technology, 2013, 47, 4581-4589.	10.0	111
100	Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants. Water Research, 2013, 47, 725-736.	11.3	49
101	Detection and quantification of ionophore antibiotics in runoff, soil and poultry litter. Journal of Chromatography A, 2013, 1312, 10-17.	3.7	46
102	Acid-Catalyzed Transformation of Ionophore Veterinary Antibiotics: Reaction Mechanism and Product Implications. Environmental Science & Technology, 2013, 47, 6781-6789.	10.0	18
103	Catalytic Impact of Activated Carbon on the Formation of Nitrosamines from Different Amine Precursors. ACS Symposium Series, 2013, , 79-100.	0.5	3
104	Occurrence and Removal of PPCPs in Urban Wastewater. Proceedings of the Water Environment Federation, 2012, 2012, 3863-3878.	0.0	3
105	Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides. Journal of Hazardous Materials, 2012, 227-228, 378-385.	12.4	126
106	Oxidation of Antibiotic Agent Trimethoprim by Chlorine Dioxide: Reaction Kinetics and Pathways. Journal of Environmental Engineering, ASCE, 2012, 138, 360-366.	1.4	14
107	Mechanisms of antibiotic removal by nanofiltration membranes: Model development and application. Journal of Membrane Science, 2012, 389, 234-244.	8.2	49
108	PolyDADMAC and Dimethylamine as Precursors of <i>N</i> -Nitrosodimethylamine during Ozonation: Reaction Kinetics and Mechanisms. Environmental Science & Technology, 2011, 45, 4353-4359.	10.0	116

#	Article	IF	CITATIONS
109	<i>N</i> -Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon. Environmental Science & amp; Technology, 2011, 45, 8368-8376.	10.0	46
110	Biotransformation of Nitrosamines and Precursor Secondary Amines under Methanogenic Conditions. Environmental Science & amp; Technology, 2011, 45, 8290-8297.	10.0	22
111	Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine. Water Research, 2011, 45, 1838-1846.	11.3	150
112	Tertiary amines enhance reactions of organic contaminants with aqueous chlorine. Water Research, 2011, 45, 6087-6096.	11.3	22
113	Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide. Environmental Pollution, 2011, 159, 1092-1100.	7.5	145
114	Unexpected Role of Activated Carbon in Promoting Transformation of Secondary Amines to <i>N</i> -Nitrosamines. Environmental Science & amp; Technology, 2010, 44, 4161-4168.	10.0	66
115	Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation. Water Research, 2010, 44, 5989-5998.	11.3	187
116	Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere, 2010, 79, 779-785.	8.2	206
117	Potential N-nitrosodimethylamine (NDMA) formation from amine-based water treatment polymers in the reactions with chlorine-based oxidants and nitrosifying agents. Water Science and Technology: Water Supply, 2009, 9, 279-288.	2.1	12
118	Removal of N-Nitrosamines and Their Precursors by Nanofiltration and Reverse Osmosis Membranes. Journal of Environmental Engineering, ASCE, 2009, 135, 788-795.	1.4	60
119	Degradation of Amine-Based Water Treatment Polymers during Chloramination as <i>N-</i> Nitrosodimethylamine (NDMA) Precursors. Environmental Science & Technology, 2009, 43, 1360-1366.	10.0	140
120	Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems. Environmental Science & Technology, 2009, 43, 3087-3093.	10.0	66
121	Delineating Oxidative Processes of Aqueous C ₆₀ Preparations: Role of THF Peroxide. Environmental Science & Technology, 2009, 43, 108-113.	10.0	56
122	Transformation of Tetracyclines Mediated by Mn(II) and Cu(II) Ions in the Presence of Oxygen. Environmental Science & Technology, 2009, 43, 401-407.	10.0	136
123	Biotransformation of Nitrosamines and Secondary Amines in a Mixed Methanogenic Culture. Proceedings of the Water Environment Federation, 2009, 2009, 558-567.	0.0	1
124	Adsorption, desorption, and steady-state removal of 17β-estradiol by nanofiltration membranes. Journal of Membrane Science, 2008, 319, 38-43.	8.2	62
125	Kinetic Modeling of Oxidation of Antibacterial Agents by Manganese Oxide. Environmental Science & Technology, 2008, 42, 5548-5554.	10.0	182
126	Aqueous chlorination of the antibacterial agent trimethoprim: Reaction kinetics and pathways. Water Research, 2007, 41, 647-655.	11.3	138

#	Article	IF	CITATIONS
127	Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 2007, 66, 1502-1512.	8.2	165
128	Rapid Hydrolysis of Organophosphorous Esters Induced by Nanostructured, Fluorine-Doped Titania Replicas of Diatom Frustules. Journal of the American Ceramic Society, 2007, 90, 1632-1636.	3.8	47
129	Reaction and Transformation of Antibacterial Agents with Aqueous Chlorine under Relevant Water Treatment Conditions. , 2007, , 261-289.		0
130	Reaction Kinetics and Transformation of Carbadox and Structurally Related Compounds with Aqueous Chlorine. Environmental Science & amp; Technology, 2006, 40, 7228-7235.	10.0	29
131	Oxidative Transformation of Fluoroquinolone Antibacterial Agents and Structurally Related Amines by Manganese Oxide. Environmental Science & Technology, 2005, 39, 4474-4483.	10.0	292
132	Interactions of Fluoroquinolone Antibacterial Agents with Aqueous Chlorine:Â Reaction Kinetics, Mechanisms, and Transformation Pathways. Environmental Science & Technology, 2005, 39, 7065-7076.	10.0	235
133	Reactivity and Transformation of Antibacterial N-Oxides in the Presence of Manganese Oxide. Environmental Science & Technology, 2005, 39, 593-601.	10.0	84
134	Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A, 2004, 1042, 113-121.	3.7	302
135	Transformation of the Antibacterial Agent Sulfamethoxazole in Reactions with Chlorine:Â Kinetics, Mechanisms, and Pathways. Environmental Science & Technology, 2004, 38, 5607-5615.	10.0	294
136	Oxidative Transformation of Triclosan and Chlorophene by Manganese Oxides. Environmental Science & Technology, 2003, 37, 2421-2430.	10.0	333
137	Transformation of the Plant Growth Regulator Daminozide (Alar) and Structurally Related Compounds with Cull Ions:  Oxidation versus Hydrolysis. Environmental Science & Technology, 2003, 37, 1829-1837.	10.0	21
138	Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzymeâ€linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environmental Toxicology and Chemistry, 2001, 20, 133-139.	4.3	357
139	ANALYSIS OF ESTROGENIC HORMONES IN MUNICIPAL WASTEWATER EFFLUENT AND SURFACE WATER USING ENZYME-LINKED IMMUNOSORBENT ASSAY AND GAS CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY. Environmental Toxicology and Chemistry, 2001, 20, 133.	4.3	16
140	Synergistic Catalysis of Dimetilan Hydrolysis by Metal Ions and Organic Ligands. Environmental Science & Technology, 2000, 34, 4117-4122.	10.0	17
141	Hydrolysis of Naptalam and Structurally Related Amides:  Inhibition by Dissolved Metal Ions and Metal (Hydr)Oxide Surfaces. Journal of Agricultural and Food Chemistry, 1999, 47, 4425-4434.	5.2	13