Ching-Hua Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4208522/publications.pdf

Version: 2024-02-01

22153 29157 11,563 141 59 104 citations h-index g-index papers 143 143 143 8055 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Degradation of Pharmaceuticals and Metabolite in Synthetic Human Urine by UV, UV/H ₂ O ₂ , and UV/PDS. Environmental Science & Envir	10.0	397
2	Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzymeâ€linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environmental Toxicology and Chemistry, 2001, 20, 133-139.	4.3	357
3	Year-long evaluation on the occurrence and fate ofÂpharmaceuticals, personal care products, andÂendocrine disrupting chemicals in an urban drinking water treatment plant. Water Research, 2014, 51, 266-276.	11.3	345
4	Oxidative Transformation of Triclosan and Chlorophene by Manganese Oxides. Environmental Science & Env	10.0	333
5	Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A, 2004, 1042, 113-121.	3.7	302
6	Transformation of the Antibacterial Agent Sulfamethoxazole in Reactions with Chlorine:Â Kinetics, Mechanisms, and Pathways. Environmental Science & Environmental Science & 2004, 38, 5607-5615.	10.0	294
7	Perfluorooctanoic Acid Degradation Using UV–Persulfate Process: Modeling of the Degradation and Chlorate Formation. Environmental Science & Eamp; Technology, 2016, 50, 772-781.	10.0	294
8	Advanced Oxidation Process with Peracetic Acid and Fe(II) for Contaminant Degradation. Environmental Science & Environmental S	10.0	294
9	Oxidative Transformation of Fluoroquinolone Antibacterial Agents and Structurally Related Amines by Manganese Oxide. Environmental Science & Environme	10.0	292
10	Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Research, 2021, 188, 116479.	11.3	284
11	UV/Peracetic Acid for Degradation of Pharmaceuticals and Reactive Species Evaluation. Environmental Science & Evaluation and Science & Evaluation	10.0	274
12	Interactions of Fluoroquinolone Antibacterial Agents with Aqueous Chlorine:Â Reaction Kinetics, Mechanisms, and Transformation Pathways. Environmental Science & Environmental Science, 2005, 39, 7065-7076.	10.0	235
13	Application of nanotechnologies for removing pharmaceutically active compounds from water: development and future trends. Environmental Science: Nano, 2018, 5, 27-47.	4.3	211
14	Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere, 2010, 79, 779-785.	8.2	206
15	Cobalt/Peracetic Acid: Advanced Oxidation of Aromatic Organic Compounds by Acetylperoxyl Radicals. Environmental Science & Env	10.0	200
16	Inactivation of <i>Escherichia coli</i> , Bacteriophage MS2, and <i>Bacillus</i> Spores under UV/H ₂ O ₂ and UV/Peroxydisulfate Advanced Disinfection Conditions. Environmental Science & Environmental Scie	10.0	194
17	Degradation of DEET and Caffeine under UV/Chlorine and Simulated Sunlight/Chlorine Conditions. Environmental Science & Environ	10.0	192
18	Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation. Water Research, 2010, 44, 5989-5998.	11.3	187

#	Article	IF	CITATIONS
19	Kinetic Modeling of Oxidation of Antibacterial Agents by Manganese Oxide. Environmental Science & Envi	10.0	182
20	UV/H ₂ O ₂ and UV/PDS Treatment of Trimethoprim and Sulfamethoxazole in Synthetic Human Urine: Transformation Products and Toxicity. Environmental Science & Eamp; Technology, 2016, 50, 2573-2583.	10.0	181
21	Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere, 2016, 159, 526-535.	8.2	180
22	Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 2007, 66, 1502-1512.	8.2	165
23	Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H 2 O 2 and UV/PDS. Water Research, 2016, 103, 283-292.	11.3	164
24	Reactions of tetracycline antibiotics with chlorine dioxide and free chlorine. Water Research, 2011, 45, 1838-1846.	11.3	150
25	Hydrophobic sorption behaviors of $17\hat{l}^2$ -Estradiol on environmental microplastics. Chemosphere, 2019, 226, 726-735.	8.2	148
26	Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide. Environmental Pollution, 2011, 159, 1092-1100.	7. 5	145
27	Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation. Environmental Science & Environmental Science	10.0	145
28	Selective Transformation of \hat{l}^2 -Lactam Antibiotics by Peroxymonosulfate: Reaction Kinetics and Nonradical Mechanism. Environmental Science & Env	10.0	143
29	Degradation of Amine-Based Water Treatment Polymers during Chloramination as <i>N-</i> Nitrosodimethylamine (NDMA) Precursors. Environmental Science &	10.0	140
30	Aqueous chlorination of the antibacterial agent trimethoprim: Reaction kinetics and pathways. Water Research, 2007, 41, 647-655.	11.3	138
31	Transformation of Tetracyclines Mediated by Mn(II) and Cu(II) lons in the Presence of Oxygen. Environmental Science & Environm	10.0	136
32	Oxidation of \hat{l}^2 -lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation. Water Research, 2017, 123, 153-161.	11.3	133
33	Modeling the Kinetics of UV/Peracetic Acid Advanced Oxidation Process. Environmental Science & Emp; Technology, 2020, 54, 7579-7590.	10.0	131
34	Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides. Journal of Hazardous Materials, 2012, 227-228, 378-385.	12.4	126
35	Reactivity of Peracetic Acid with Organic Compounds: A Critical Review. ACS ES&T Water, 2021, 1, 15-33.	4.6	124
36	Complexation Enhances Cu(II)-Activated Peroxydisulfate: A Novel Activation Mechanism and Cu(III) Contribution. Environmental Science & Eamp; Technology, 2019, 53, 11774-11782.	10.0	119

#	Article	IF	Citations
37	PolyDADMAC and Dimethylamine as Precursors of $\langle i \rangle N \langle i \rangle$ -Nitrosodimethylamine during Ozonation: Reaction Kinetics and Mechanisms. Environmental Science & Environmental	10.0	116
38	Kinetics and Modeling of Degradation of Ionophore Antibiotics by UV and UV/H ₂ O ₂ . Environmental Science &	10.0	111
39	Oxidation of Pharmaceuticals by Ferrate(VI) in Hydrolyzed Urine: Effects of Major Inorganic Constituents. Environmental Science & Environmental Scienc	10.0	109
40	Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation. Chemosphere, 2015, 119, 1255-1261.	8.2	100
41	Oxidation of Sulfonamide Antibiotics of Six-Membered Heterocyclic Moiety by Ferrate(VI): Kinetics and Mechanistic Insight into SO ₂ Extrusion. Environmental Science & Extrusion Samp; Technology, 2019, 53, 2695-2704.	10.0	95
42	Effects of Combined UV and Chlorine Treatment on the Formation of Trichloronitromethane from Amine Precursors. Environmental Science & Environmental S	10.0	89
43	Peracetic Acidâ€"Ruthenium(III) Oxidation Process for the Degradation of Micropollutants in Water. Environmental Science & Camp; Technology, 2021, 55, 9150-9160.	10.0	85
44	Reactivity and Transformation of Antibacterial N-Oxides in the Presence of Manganese Oxide. Environmental Science & Environmen	10.0	84
45	Effect of Metal lons on Oxidation of Micropollutants by Ferrate(VI): Enhancing Role of Fe ^{IV} Species. Environmental Science & Environmental	10.0	84
46	Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: A critical review. Water Research, 2021, 202, 117463.	11.3	81
47	PPCP Degradation by Chlorine–UV Processes in Ammoniacal Water: New Reaction Insights, Kinetic Modeling, and DBP Formation. Environmental Science & Environmental Science & 2018, 52, 7833-7841.	10.0	80
48	Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Research, 2017, 123, 224-235.	11.3	79
49	Oxidation of amino acids by peracetic acid: Reaction kinetics, pathways and theoretical calculations. Water Research X, 2018 , 1 , 100002 .	6.1	7 5
50	Rejection and adsorption of trace pharmaceuticals by coating a forward osmosis membrane with TiO 2. Chemical Engineering Journal, 2015, 279, 904-911.	12.7	67
51	Occurrence and Fate of Nitrosamines and Their Precursors in Municipal Sludge and Anaerobic Digestion Systems. Environmental Science & Environmental Sc	10.0	66
52	Unexpected Role of Activated Carbon in Promoting Transformation of Secondary Amines to <i>N</i> -Nitrosamines. Environmental Science & Environmental Sc	10.0	66
53	N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. Journal of Hazardous Materials, 2015, 282, 133-140.	12.4	66
54	Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine. Water Research, 2015, 68, 510-521.	11.3	64

#	Article	IF	Citations
55	Removal of pharmaceuticals and personal care products by two-stage biofiltration for drinking water treatment. Science of the Total Environment, 2019, 664, 240-248.	8.0	63
56	Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus faecalis in municipal wastewater. Water Research, 2020, 173, 115552.	11.3	63
57	Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. Environmental Science & Environmental Scie	10.0	63
58	Adsorption, desorption, and steady-state removal of $17\hat{l}^2$ -estradiol by nanofiltration membranes. Journal of Membrane Science, 2008, 319, 38-43.	8.2	62
59	Multiple Roles of Cu(II) in Catalyzing Hydrolysis and Oxidation of \hat{I}^2 -Lactam Antibiotics. Environmental Science & Envir	10.0	62
60	Removal of N-Nitrosamines and Their Precursors by Nanofiltration and Reverse Osmosis Membranes. Journal of Environmental Engineering, ASCE, 2009, 135, 788-795.	1.4	60
61	Inactivation of Bacteria by Peracetic Acid Combined with Ultraviolet Irradiation: Mechanism and Optimization. Environmental Science & Environmental Sc	10.0	60
62	Enhanced ferrate(VI) oxidation of micropollutants in water by carbonaceous materials: Elucidating surface functionality. Chemical Engineering Journal, 2020, 398, 125607.	12.7	60
63	Rapid Disinfection by Peracetic Acid Combined with UV Irradiation. Environmental Science and Technology Letters, 2018, 5, 400-404.	8.7	58
64	Visible Light-Induced Catalyst-Free Activation of Peroxydisulfate: Pollutant-Dependent Production of Reactive Species. Environmental Science & Environ	10.0	58
65	Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor. Water Research, 2015, 87, 127-136.	11.3	57
66	Delineating Oxidative Processes of Aqueous C ₆₀ Preparations: Role of THF Peroxide. Environmental Science & Environm	10.0	56
67	Cu(II)–Catalyzed Transformation of Benzylpenicillin Revisited: The Overlooked Oxidation. Environmental Science & Technology, 2015, 49, 4218-4225.	10.0	56
68	Evaluation of disinfection by-product formation potential (DBPFP) during chlorination of two algae species â€" Blue-green Microcystis aeruginosa and diatom Cyclotella meneghiniana. Science of the Total Environment, 2015, 532, 540-547.	8.0	55
69	Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. Chemosphere, 2017, 166, 311-322.	8.2	55
70	Formation of disinfection byproducts in wash water and lettuce by washing with sodium hypochlorite and peracetic acid sanitizers. Food Chemistry: X, 2019, 1, 100003.	4.3	54
71	The Presence of Pharmaceuticals and Personal Care Products in Swimming Pools. Environmental Science and Technology Letters, 2014, 1, 495-498.	8.7	52
72	Photodegradation of Veterinary Ionophore Antibiotics under UV and Solar Irradiation. Environmental Science & Echnology, 2014, 48, 13188-13196.	10.0	52

#	Article	IF	Citations
73	Mechanisms of antibiotic removal by nanofiltration membranes: Model development and application. Journal of Membrane Science, 2012, 389, 234-244.	8.2	49
74	Oxidation of dithiocarbamates to yield N-nitrosamines by water disinfection oxidants. Water Research, 2013, 47, 725-736.	11.3	49
75	Rapid Hydrolysis of Organophosphorous Esters Induced by Nanostructured, Fluorine-Doped Titania Replicas of Diatom Frustules. Journal of the American Ceramic Society, 2007, 90, 1632-1636.	3.8	47
76	$\langle i \rangle N \langle i \rangle$ -Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon. Environmental Science & Enviro	10.0	46
77	Detection and quantification of ionophore antibiotics in runoff, soil and poultry litter. Journal of Chromatography A, 2013, 1312, 10-17.	3.7	46
78	Ferrate(VI)-peracetic acid oxidation process: Rapid degradation of pharmaceuticals in water. Chemical Engineering Journal, 2022, 429, 132384.	12.7	45
79	Biodegradation of Veterinary Ionophore Antibiotics in Broiler Litter and Soil Microcosms. Environmental Science & Environmental Science & Environmenta	10.0	43
80	Effects of combined UV and chlorine treatment on chloroform formation from triclosan. Chemosphere, 2016, 150, 715-722.	8.2	41
81	pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing. Journal of Integrative Agriculture, 2017, 16, 2914-2923.	3.5	41
82	Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation. Chemical Engineering Journal, 2016, 283, 730-739.	12.7	40
83	Revelation of ferrate(VI) unimolecular decay under alkaline conditions: Investigation of involvement of Fe(IV) and Fe(V) species. Chemical Engineering Journal, 2020, 388, 124134.	12.7	40
84	Tetracycline inhibition and transformation in microbial fuel cell systems: Performance, transformation intermediates, and microbial community structure. Bioresource Technology, 2021, 322, 124534.	9.6	38
85	Ferrate(VI) Oxidation of Pharmaceuticals in Hydrolyzed Urine: Enhancement by Creatinine and the Role of Fe(IV). ACS ES&T Water, 2021, 1, 969-979.	4.6	38
86	Interfacial Solar Distillation for Freshwater Production: Fate of Volatile and Semivolatile Organic Contaminants. Environmental Science & Environmenta	10.0	37
87	Transformation of halobenzoquinones with the presence of amino acids in water: Products, pathways and toxicity. Water Research, 2017, 122, 299-307.	11.3	36
88	Immobilization of Heavy Metals by Solidification/Stabilization of Co-Disposed Flue Gas Desulfurization Brine and Coal Fly Ash. Energy & En	5.1	34
89	Unexpected Role of Nitrite in Promoting Transformation of Sulfonamide Antibiotics by Peracetic Acid: Reactive Nitrogen Species Contribution and Harmful Disinfection Byproduct Formation Potential. Environmental Science & En	10.0	33
90	Preferential Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Environmental Science & Enviro	10.0	32

#	Article	IF	Citations
91	Pilot testing of direct and indirect potable water reuse using multi-stage ozone-biofiltration without reverse osmosis. Water Research, 2020, 169, 115178.	11.3	30
92	Enhanced Degradation of Micropollutants in a Peracetic Acid–Fe(III) System with Picolinic Acid. Environmental Science & Env	10.0	30
93	Reaction Kinetics and Transformation of Carbadox and Structurally Related Compounds with Aqueous Chlorine. Environmental Science & Environmental Scien	10.0	29
94	Substructure Reactivity Affecting the Manganese Dioxide Oxidation of Cephalosporins. Environmental Science & Environmental Sci	10.0	29
95	Revelation of Fe(V)/Fe(IV) Involvement in the Fe(VI)–ABTS System: Kinetic Modeling and Product Analysis. Environmental Science & Environmental Scie	10.0	28
96	Silver Nanowire-Modified Filter with Controllable Silver Ion Release for Point-of-Use Disinfection. Environmental Science & En	10.0	26
97	Analysis of 40 conventional and emerging disinfection by-products in fresh-cut produce wash water by modified EPA methods. Food Chemistry, 2018, 256, 319-326.	8.2	25
98	Simultaneous and precise recovery of lithium and boron from salt lake brine by capacitive deionization with oxygen vacancy-rich CoP/Co3O4-graphene aerogel. Chemical Engineering Journal, 2021, 420, 127661.	12.7	24
99	Simultaneous quantification of peracetic acid and hydrogen peroxide in different water matrices using HPLC-UV. Chemosphere, 2020, 257, 127229.	8.2	23
100	A review on treatment of disinfection byproduct precursors by biological activated carbon process. Chinese Chemical Letters, 2022, 33, 4495-4504.	9.0	23
101	Biotransformation of Nitrosamines and Precursor Secondary Amines under Methanogenic Conditions. Environmental Science & Enviro	10.0	22
102	Tertiary amines enhance reactions of organic contaminants with aqueous chlorine. Water Research, 2011, 45, 6087-6096.	11.3	22
103	Transformation of the Plant Growth Regulator Daminozide (Alar) and Structurally Related Compounds with Cull Ions:  Oxidation versus Hydrolysis. Environmental Science & Echnology, 2003, 37, 1829-1837.	10.0	21
104	Removal of heavy metals by aged zero-valent iron from flue-gas-desulfurization brine under high salt and temperature conditions. Journal of Hazardous Materials, 2019, 373, 572-579.	12.4	21
105	Sorption of Se(IV) and Se(VI) to coal fly ash/cement composite: Effect of Ca2+ and high ionic strength. Chemical Geology, 2017, 464, 76-83.	3.3	20
106	Sources of pharmaceuticals and personal care products in swimming pools. Journal of Water and Health, 2017, 15, 829-833.	2.6	20
107	Capillary-Assisted Fabrication of Thin-Film Nanocomposite Membranes for Improved Solute–Solute Separation. Environmental Science & Environmental Sc	10.0	20
108	Acid-Catalyzed Transformation of Ionophore Veterinary Antibiotics: Reaction Mechanism and Product Implications. Environmental Science & Environmental	10.0	18

#	Article	IF	Citations
109	Solidification/stabilization of flue gas desulfurization brine and coal fly ash for heavy metals and chloride immobilization: Effects of S/S conditions and zero-valent-iron pretreatment. Journal of Hazardous Materials, 2020, 384, 121463.	12.4	18
110	Synergistic Catalysis of Dimetilan Hydrolysis by Metal Ions and Organic Ligands. Environmental Science & Environmental Science	10.0	17
111	Significant Effect of Evaporation Process on the Reaction of Sulfamethoxazole with Manganese Oxide. Environmental Science & Eamp; Technology, 2020, 54, 4856-4864.	10.0	17
112	Transformation, products, and pathways of chlorophenols via electro-enzymatic catalysis: How to control toxic intermediate products. Chemosphere, 2016, 144, 1674-1681.	8.2	16
113	Synergistic activation of peroxydisulfate with magnetite and copper ion at neutral condition. Water Research, 2020, 186, 116371.	11.3	16
114	ANALYSIS OF ESTROGENIC HORMONES IN MUNICIPAL WASTEWATER EFFLUENT AND SURFACE WATER USING ENZYME-LINKED IMMUNOSORBENT ASSAY AND GAS CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY. Environmental Toxicology and Chemistry, 2001, 20, 133.	4.3	16
115	Oxidation of Antibiotic Agent Trimethoprim by Chlorine Dioxide: Reaction Kinetics and Pathways. Journal of Environmental Engineering, ASCE, 2012, 138, 360-366.	1.4	14
116	Hydrolysis of Naptalam and Structurally Related Amides:  Inhibition by Dissolved Metal Ions and Metal (Hydr)Oxide Surfaces. Journal of Agricultural and Food Chemistry, 1999, 47, 4425-4434.	5.2	13
117	Analytical methods for conventional and emerging disinfection by-products in fresh-cut produce. Food Chemistry, 2019, 291, 30-37.	8.2	13
118	Overlooked Role of Chromium(V) and Chromium(IV) in Chromium Redox Reactions of Environmental Importance. ACS ES&T Water, 2022, 2, 932-942.	4.6	13
119	Potential N-nitrosodimethylamine (NDMA) formation from amine-based water treatment polymers in the reactions with chlorine-based oxidants and nitrosifying agents. Water Science and Technology: Water Supply, 2009, 9, 279-288.	2.1	12
120	Inhibition and Biotransformation Potential of Veterinary Ionophore Antibiotics under Different Redox Conditions. Environmental Science & Environmental	10.0	12
121	Anaerobic Dehalogenation by Reduced Aqueous Biochars. Environmental Science &	10.0	11
122	Generation of Iron(IV) in the Oxidation of Amines by Ferrate(VI): Theoretical Insight and Implications in Oxidizing Pharmaceuticals. ACS ES&T Water, 2021, 1, 1932-1940.	4.6	11
123	Flume and single-pass washing systems for fresh-cut produce processing: Disinfection by-products evaluation. Food Control, 2022, 133, 108578.	5.5	10
124	Effect of environmental factors on the oxidative transformation of cephalosporin antibiotics by manganese dioxides. Environmental Sciences: Processes and Impacts, 2019, 21, 692-700.	3.5	9
125	Interaction of peracetic acid with chromium(III): Understanding degradation of coexisting organic pollutants in water. Journal of Hazardous Materials, 2022, 438, 129537.	12.4	9
126	Estimation of environmentally relevant chemical properties of veterinary ionophore antibiotics. Environmental Science and Pollution Research, 2016, 23, 18353-18361.	5.3	8

#	Article	IF	CITATIONS
127	Occurrence of per- and polyfluoroalkyl substances in water: a review. Environmental Science: Water Research and Technology, 2022, 8, 1136-1151.	2.4	6
128	Stacking Time and Aluminum Sulfate Effects on Polyether Ionophores in Broiler Litter. Journal of Environmental Quality, 2015, 44, 1923-1929.	2.0	5
129	Long-term broiler litter amendments can alter the soil's capacity to sorb monensin. Environmental Science and Pollution Research, 2017, 24, 13466-13473.	5.3	5
130	Enhanced formation of trihalomethane disinfection byproducts from halobenzoquinones under combined UV/chlorine conditions. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	5
131	Optimization of Iron Removal in the Recovery of Rare-Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid. Environmental Science & Earth Elements from Coal Fly Ash Using a Recyclable Ionic Liquid.	10.0	5
132	Fast coupling and detoxification of aqueous halobenzoquinones by extracellular nucleophiles: The relationship among structures, pathways and toxicity. Chemical Engineering Journal, 2022, 438, 135525.	12.7	5
133	Sequential Application of Peracetic Acid and UV Irradiation (PAA–UV/PAA) for Improved Bacterial Inactivation in Fresh-Cut Produce Wash Water. ACS ES&T Water, 2022, 2, 1247-1253.	4.6	5
134	Alum and Rainfall Effects on Ionophores in Runoff from Surface-Applied Broiler Litter. Journal of Environmental Quality, 2015, 44, 1657-1666.	2.0	4
135	Occurrence and Removal of PPCPs in Urban Wastewater. Proceedings of the Water Environment Federation, 2012, 2012, 3863-3878.	0.0	3
136	Catalytic Impact of Activated Carbon on the Formation of Nitrosamines from Different Amine Precursors. ACS Symposium Series, 2013, , 79-100.	0.5	3
137	Oxidative Transformation of Controlled Substances by Manganese Dioxide. Scientific World Journal, The, 2015, 2015, 1-9.	2.1	2
138	Mass transport release of heavy metal oxyanions from solidified/stabilized co-disposed flue gas desulfurization brine and coal fly ash monoliths. Environmental Science and Pollution Research, 2021, 28, 29945-29957.	5.3	2
139	Biotransformation of Nitrosamines and Secondary Amines in a Mixed Methanogenic Culture. Proceedings of the Water Environment Federation, 2009, 2009, 558-567.	0.0	1
140	Reaction and Transformation of Antibacterial Agents with Aqueous Chlorine under Relevant Water Treatment Conditions., 2007,, 261-289.		0
141	Quantification of hazardous pollutants in biological systems. , 2018, , 069-122.		0