
Pete Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4207610/publications.pdf Version: 2024-02-01

DETE SMITH

#	Article	IF	CITATIONS
1	Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 789-813.	4.0	1,739
2	Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11645-11650.	7.1	1,709
3	Climate extremes and the carbon cycle. Nature, 2013, 500, 287-295.	27.8	1,357
4	Ecosystem Service Supply and Vulnerability to Global Change in Europe. Science, 2005, 310, 1333-1337.	12.6	1,355
5	Climate-smart soils. Nature, 2016, 532, 49-57.	27.8	1,320
6	Sustainable Intensification in Agriculture: Premises and Policies. Science, 2013, 341, 33-34.	12.6	1,233
7	The technological and economic prospects for CO2 utilization and removal. Nature, 2019, 575, 87-97.	27.8	1,142
8	The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2016, 2, 111-128.	4.9	1,077
9	A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 1997, 81, 153-225.	5.1	974
10	Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6, 42-50.	18.8	973
11	Betting on negative emissions. Nature Climate Change, 2014, 4, 850-853.	18.8	846
12	Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 2010, 8, 779-790.	28.6	826
13	Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 2018, 13, 063002.	5.2	823
14	Carbon sequestration in the agricultural soils of Europe. Geoderma, 2004, 122, 1-23.	5.1	732
15	Clobal agriculture and nitrous oxide emissions. Nature Climate Change, 2012, 2, 410-416.	18.8	729
16	Agricultural soils as a sink to mitigate CO2emissions. Soil Use and Management, 1997, 13, 230-244.	4.9	719
17	Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 2015, 21, 2861-2880.	9.5	683
18	Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 2005, 433, 57-59.	27.8	629

#	Article	IF	CITATIONS
19	Global nitrogen deposition and carbon sinks. Nature Geoscience, 2008, 1, 430-437.	12.9	629
20	The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE, 2016, 11, e0165797.	2.5	617
21	Global change pressures on soils from land use and management. Global Change Biology, 2016, 22, 1008-1028.	9.5	605
22	Greenhouse gas mitigation potentials in the livestock sector. Nature Climate Change, 2016, 6, 452-461.	18.8	588
23	Soil carbon sequestration and biochar as negative emission technologies. Global Change Biology, 2016, 22, 1315-1324.	9.5	577
24	The role of soil carbon in natural climate solutions. Nature Sustainability, 2020, 3, 391-398.	23.7	571
25	Importance of food-demand management for climate mitigation. Nature Climate Change, 2014, 4, 924-929.	18.8	562
26	Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18226-18231.	7.1	559
27	Europe's Terrestrial Biosphere Absorbs 7 to 12% of European Anthropogenic CO2 Emissions. Science, 2003, 300, 1538-1542.	12.6	551
28	Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters, 2018, 13, 063001.	5.2	498
29	Bioenergy and climate change mitigation: an assessment. GCB Bioenergy, 2015, 7, 916-944.	5.6	494
30	Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems and Environment, 2007, 118, 6-28.	5.3	459
31	How much landâ€based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?. Clobal Change Biology, 2013, 19, 2285-2302.	9.5	454
32	Assessing "Dangerous Climate Change― Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE, 2013, 8, e81648.	2.5	448
33	Carbon sequestration in croplands: the potential in Europe and the global context. European Journal of Agronomy, 2004, 20, 229-236.	4.1	443
34	The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 2013, 8, 015009.	5.2	437
35	Strategies for feeding the world more sustainably with organic agriculture. Nature Communications, 2017, 8, 1290.	12.8	437
36	Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 2018, 1, 441-446.	23.7	416

#	Article	IF	CITATIONS
37	A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems and Environment, 2006, 114, 57-68.	5.3	412
38	The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability, 2010, 8, 219-236.	3.5	405
39	Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current Opinion in Environmental Sustainability, 2014, 6, 8-14.	6.3	402
40	Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 2008, 81, 169-178.	2.2	367
41	Competition for land. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2941-2957.	4.0	365
42	Getting the message right on natureâ€based solutions to climate change. Global Change Biology, 2021, 27, 1518-1546.	9.5	363
43	The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990–2012. Global Change Biology, 2015, 21, 2655-2660.	9.5	357
44	Energy crops: current status and future prospects. Global Change Biology, 2006, 12, 2054-2076.	9.5	351
45	Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science, 2007, 58, 658-667.	3.9	343
46	A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Global Change Biology, 2019, 25, 2530-2543.	9.5	343
47	The role of soil organic matter in maintaining the productivity and yield stability of cereals in China. Agriculture, Ecosystems and Environment, 2009, 129, 344-348.	5.3	339
48	Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Global Change Biology, 1997, 3, 67-79.	9.5	320
49	Importance of methane and nitrous oxide for Europe's terrestrial greenhouse-gas balance. Nature Geoscience, 2009, 2, 842-850.	12.9	310
50	How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 2020, 26, 219-241.	9.5	308
51	Contribution of the land sector to a 1.5 °C world. Nature Climate Change, 2019, 9, 817-828.	18.8	301
52	Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080. Global Change Biology, 2005, 11, 2141-2152.	9.5	298
53	Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nature Food, 2021, 2, 724-732.	14.0	298
54	Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology, 2000, 6, 525-539.	9.5	294

#	Article	IF	CITATIONS
55	Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands. Agriculture, Ecosystems and Environment, 2018, 253, 62-81.	5.3	289
56	Innovation can accelerate the transition towards a sustainable food system. Nature Food, 2020, 1, 266-272.	14.0	285
57	Ruminants, climate change and climate policy. Nature Climate Change, 2014, 4, 2-5.	18.8	276
58	Reducing emissions from agriculture to meet the 2°C target. Global Change Biology, 2016, 22, 3859-3864.	9.5	267
59	Delivering food security without increasing pressure on land. Global Food Security, 2013, 2, 18-23.	8.1	264
60	Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2848-2853.	7.1	260
61	Carbon losses from soil and its consequences for land-use management. Science of the Total Environment, 2007, 382, 165-190.	8.0	257
62	Yield and spatial supply of bioenergy poplar and willow shortâ€rotation coppice in the UK. New Phytologist, 2008, 178, 358-370.	7.3	252
63	How long before a change in soil organic carbon can be detected?. Global Change Biology, 2004, 10, 1878-1883.	9.5	249
64	Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil, 2015, 1, 665-685.	4.9	249
65	Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 2005, 11, 2211-2233.	9.5	246
66	Spatial distribution of soil organic carbon stocks in France. Biogeosciences, 2011, 8, 1053-1065.	3.3	246
67	Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biology and Biochemistry, 1998, 30, 1207-1211.	8.8	241
68	Food vs. fuel: the use of land for lignocellulosic â€~next generation' energy crops that minimize competition with primary food production. GCB Bioenergy, 2012, 4, 1-19.	5.6	240
69	Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, 2010, 148, 543-552.	1.3	235
70	Integrating plant–soil interactions into global carbon cycle models. Journal of Ecology, 2009, 97, 851-863.	4.0	233
71	Impact of Global Warming on Soil Organic Carbon. Advances in Agronomy, 2008, 97, 1-43.	5.2	231
72	Mitigating climate change: the role of domestic livestock. Animal, 2010, 4, 323-333.	3.3	228

#	Article	IF	CITATIONS
73	Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Global Environmental Change, 2017, 47, 1-12.	7.8	225
74	The carbon footprints of food crop production. International Journal of Agricultural Sustainability, 2009, 7, 107-118.	3.5	224
75	Negative emissions—Part 3: Innovation and upscaling. Environmental Research Letters, 2018, 13, 063003.	5.2	224
76	Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems and Environment, 2010, 139, 302-315.	5.3	221
77	Preliminary estimates of the potential for carbon mitigation in European soils through noâ€ŧill farming. Global Change Biology, 1998, 4, 679-685.	9.5	213
78	Aligning agriculture and climate policy. Nature Climate Change, 2017, 7, 307-309.	18.8	213
79	Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. Journal of the Royal Society Interface, 2015, 12, 20150891.	3.4	211
80	Climate change and sustainable food production. Proceedings of the Nutrition Society, 2013, 72, 21-28.	1.0	210
81	Matching policy and science: Rationale for the â€~4 per 1000 - soils for food security and climate' initiative. Soil and Tillage Research, 2019, 188, 3-15.	5.6	208
82	The 4p1000 initiative: Opportunities, limitations and challenges for implementing soil organic carbon sequestration as a sustainable development strategy. Ambio, 2020, 49, 350-360.	5.5	208
83	Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. Environmental Pollution, 2007, 150, 125-139.	7.5	203
84	Significant soil acidification across northern China's grasslands during 1980s–2000s. Global Change Biology, 2012, 18, 2292-2300.	9.5	200
85	Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Tai Lake region, China. Agriculture, Ecosystems and Environment, 2009, 131, 274-280.	5.3	199
86	The potential distribution of bioenergy crops in Europe under present and future climate. Biomass and Bioenergy, 2006, 30, 183-197.	5.7	198
87	First 20 years of DNDC (DeNitrification DeComposition): Model evolution. Ecological Modelling, 2014, 292, 51-62.	2.5	195
88	Management effects on net ecosystem carbon and GHC budgets at European crop sites. Agriculture, Ecosystems and Environment, 2010, 139, 363-383.	5.3	194
89	Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment, 2017, 238, 5-24.	5.3	193
90	The environmental costs and benefits of high-yield farming. Nature Sustainability, 2018, 1, 477-485.	23.7	193

#	Article	IF	CITATIONS
91	Carbon footprint of China's crop production—An estimation using agro-statistics data over 1993–2007. Agriculture, Ecosystems and Environment, 2011, 142, 231-237.	5.3	192
92	The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores. Global Change Biology, 2016, 22, 2688-2701.	9.5	189
93	Young people's burden: requirement of negative CO ₂ emissions. Earth System Dynamics, 2017, 8, 577-616.	7.1	189
94	The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 2022, 376, 839-844.	12.6	188
95	UK land use and soil carbon sequestration. Land Use Policy, 2009, 26, S274-S283.	5.6	187
96	Long-Term Soil Experiments: Keys to Managing Earth's Rapidly Changing Ecosystems. Soil Science Society of America Journal, 2007, 71, 266-279.	2.2	186
97	The European carbon balance. Part 2: croplands. Global Change Biology, 2010, 16, 1409-1428.	9.5	185
98	Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology, 2013, 19, 3-18.	9.5	183
99	Sustainability in global agriculture driven by organic farming. Nature Sustainability, 2019, 2, 253-255.	23.7	182
100	Do grasslands act as a perpetual sink for carbon?. Global Change Biology, 2014, 20, 2708-2711.	9.5	181
101	Land-Management Options for Greenhouse Gas Removal and Their Impacts on Ecosystem Services and the Sustainable Development Goals. Annual Review of Environment and Resources, 2019, 44, 255-286.	13.4	181
102	The carbon sequestration potential of terrestrial ecosystems. Journal of Soils and Water Conservation, 2018, 73, 145A-152A.	1.6	180
103	A farm-focused calculator for emissions from crop and livestock production. Environmental Modelling and Software, 2011, 26, 1070-1078.	4.5	179
104	The carbon budget of terrestrial ecosystems at country-scale – a European case study. Biogeosciences, 2005, 2, 15-26.	3.3	178
105	Direct nitrous oxide emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 2017, 238, 25-35.	5.3	178
106	The potential for land sparing to offset greenhouse gas emissions from agriculture. Nature Climate Change, 2016, 6, 488-492.	18.8	177
107	Soil physics meets soil biology: Towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry, 2012, 47, 78-92.	8.8	173
108	Soils and climate change. Current Opinion in Environmental Sustainability, 2012, 4, 539-544.	6.3	172

#	Article	IF	CITATIONS
109	Reducing greenhouse gas emissions in agriculture without compromising food security?. Environmental Research Letters, 2017, 12, 105004.	5.2	172
110	Soil carbon stock and its changes in northern China's grasslands from 1980s to 2000s. Global Change Biology, 2010, 16, 3036-3047.	9.5	169
111	REVIEW: The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 2013, 50, 812-829.	4.0	169
112	Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. Agriculture, Ecosystems and Environment, 2017, 237, 234-241.	5.3	168
113	Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience, 2017, 10, 420-424.	12.9	166
114	Which practices coâ€deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification?. Global Change Biology, 2020, 26, 1532-1575.	9.5	164
115	Soil salinity decreases global soil organic carbon stocks. Science of the Total Environment, 2013, 465, 267-272.	8.0	162
116	Impacts of land use, population, and climate change on global food security. Food and Energy Security, 2021, 10, e261.	4.3	162
117	Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Global Change Biology, 2016, 22, 763-781.	9.5	161
118	Modelling refractory soil organic matter. Biology and Fertility of Soils, 2000, 30, 388-398.	4.3	158
119	Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agriculture, Ecosystems and Environment, 2015, 209, 108-124.	5.3	158
120	Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Science of the Total Environment, 2017, 598, 445-470.	8.0	157
121	National mitigation potential from natural climate solutions in the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190126.	4.0	157
122	Title is missing!. Nutrient Cycling in Agroecosystems, 2001, 60, 237-252.	2.2	156
123	The development of MISCANFOR, a new <i>Miscanthus</i> crop growth model: towards more robust yield predictions under different climatic and soil conditions. GCB Bioenergy, 2009, 1, 154-170.	5.6	155
124	An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring. Agriculture, Ecosystems and Environment, 2010, 136, 133-138.	5.3	152
125	The net biome production of full crop rotations in Europe. Agriculture, Ecosystems and Environment, 2010, 139, 336-345.	5.3	152
126	Towards an integrated global framework to assess the impacts of land use and management change on soil carbon: current capability and future vision. Global Change Biology, 2012, 18, 2089-2101.	9.5	150

#	Article	IF	CITATIONS
127	Salinity effects on carbon mineralization in soils of varying texture. Soil Biology and Biochemistry, 2011, 43, 1908-1916.	8.8	147
128	Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses. GCB Bioenergy, 2009, 1, 267-281.	5.6	146
129	Simulating SOC changes in longâ€ŧerm experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use and Management, 2002, 18, 101-111.	4.9	142
130	Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Global Change Biology, 2020, 26, 3325-3335.	9.5	142
131	Future energy potential of <i>Miscanthus</i> in Europe. GCB Bioenergy, 2009, 1, 180-196.	5.6	139
132	Carbon sequestration potential in European croplands has been overestimated. Global Change Biology, 2005, 11, 2153-2163.	9.5	138
133	Research priorities for negative emissions. Environmental Research Letters, 2016, 11, 115007.	5.2	138
134	Coâ€benefits, tradeâ€offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (<scp>AFOLU</scp>) sector. Global Change Biology, 2014, 20, 3270-3290.	9.5	137
135	Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Global Change Biology, 2009, 15, 2723-2729.	9.5	135
136	Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planetary Health, The, 2021, 5, e50-e62.	11.4	135
137	Direct measurement of soil organic carbon content change in the croplands of China. Global Change Biology, 2011, 17, 1487-1496.	9.5	133
138	Changes in soil organic carbon under perennial crops. Global Change Biology, 2020, 26, 4158-4168.	9.5	132
139	Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agriculture, Ecosystems and Environment, 2016, 235, 204-214.	5.3	130
140	Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003. Global Change Biology, 2007, 13, 2605-2609.	9.5	126
141	Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Global Change Biology, 2018, 24, 5895-5908.	9.5	126
142	Nitrogen Surplus Benchmarks for Controlling N Pollution in the Main Cropping Systems of China. Environmental Science & Technology, 2019, 53, 6678-6687.	10.0	125
143	Soils as carbon sinks: the global context. Soil Use and Management, 2004, 20, 212-218.	4.9	125
144	Conservation tillage systems: a review of its consequences for greenhouse gas emissions. Soil Use and Management, 2013, 29, 199-209.	4.9	124

#	Article	IF	CITATIONS
145	The natural abundance of13C,15N,34S and14C in archived (1923-2000) plant and soil samples from the Askov long-term experiments on animal manure and mineral fertilizer. Rapid Communications in Mass Spectrometry, 2005, 19, 3216-3226.	1.5	122
146	A synopsis of land use, land-use change and forestry (LULUCF) under the Kyoto Protocol and Marrakech Accords. Environmental Science and Policy, 2007, 10, 271-282.	4.9	121
147	Emissions of methane from northern peatlands: a review of management impacts and implications for future management options. Ecology and Evolution, 2016, 6, 7080-7102.	1.9	120
148	The vulnerabilities of agricultural land and food production to future water scarcity. Global Environmental Change, 2019, 58, 101944.	7.8	120
149	Put more carbon in soils to meet Paris climate pledges. Nature, 2018, 564, 32-34.	27.8	119
150	A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS. Energies, 2019, 12, 1747.	3.1	119
151	Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions. Current Opinion in Environmental Sustainability, 2014, 9-10, 46-54.	6.3	116
152	Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK. Agricultural Systems, 2010, 103, 198-209.	6.1	115
153	Spring-time for sinks. Nature, 2007, 446, 727-728.	27.8	114
154	Landâ€based measures to mitigate climate change: Potential and feasibility by country. Global Change Biology, 2021, 27, 6025-6058.	9.5	114
155	Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Global Change Biology, 1998, 4, 729-743.	9.5	113
156	Carbon footprint of crop production in China: an analysis of National Statistics data. Journal of Agricultural Science, 2015, 153, 422-431.	1.3	112
157	Spatially explicit estimates of N ₂ O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Global Change Biology, 2016, 22, 3383-3394.	9.5	112
158	China's future food demand and its implications for trade and environment. Nature Sustainability, 2021, 4, 1042-1051.	23.7	112
159	The impact of population growth and climate change on food security in Africa: looking ahead to 2050. International Journal of Agricultural Sustainability, 2017, 15, 124-135.	3.5	110
160	Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21968-21977.	7.1	110
161	Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great Britain. Climate Research, 2010, 45, 151-162.	1.1	109
162	Regional estimates of carbon sequestration potential: linking the Rothamsted Carbon Model to GIS databases. Biology and Fertility of Soils, 1998, 27, 236-241.	4.3	107

#	Article	IF	CITATIONS
163	Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nature Communications, 2021, 12, 118.	12.8	106
164	The potential of <i>Miscanthus</i> to sequester carbon in soils: comparing field measurements in Carlow, Ireland to model predictions. GCB Bioenergy, 2009, 1, 413-425.	5.6	104
165	How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences, 2012, 9, 3151-3171.	3.3	104
166	Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N ₂ O emissions. Global Change Biology, 2018, 24, e603-e616.	9.5	104
167	Natural climate solutions are not enough. Science, 2019, 363, 933-934.	12.6	104
168	Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus, Series B: Chemical and Physical Meteorology, 2022, 62, 700.	1.6	103
169	Quantitative methods to evaluate and compare Soil Organic Matter (SOM) Models. , 1996, , 181-199.		101
170	Testing DayCent and DNDC model simulations of N2O fluxes and assessing the impacts of climate change on the gas flux and biomass production from a humid pasture. Atmospheric Environment, 2010, 44, 2961-2970.	4.1	100
171	Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use and Management, 2010, 26, 118-125.	4.9	100
172	Estimating changes in Scottish soil carbon stocks using ECOSSE. I. Model description and uncertainties. Climate Research, 2010, 45, 179-192.	1.1	99
173	Simulating the Earth system response to negative emissions. Environmental Research Letters, 2016, 11, 095012.	5.2	98
174	When is a measured soil organic matter fraction equivalent to a model pool?. European Journal of Soil Science, 2002, 53, 405-416.	3.9	97
175	An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European Journal of Soil Science, 2005, 56, 673-680.	3.9	97
176	Saturation of the Terrestrial Carbon Sink. , 2007, , 59-78.		97
177	Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years. Global Environmental Change, 2016, 37, 43-55.	7.8	96
178	Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis. Environmental Science & Technology, 2017, 51, 4503-4511.	10.0	96
179	Management swing potential for bioenergy crops. GCB Bioenergy, 2013, 5, 623-638.	5.6	94
180	Revised estimates of the carbon mitigation potential of UK agricultural land. Soil Use and Management, 2000, 16, 293-295.	4.9	93

#	Article	IF	CITATIONS
181	Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass and Bioenergy, 2008, 32, 442-452.	5.7	93
182	A warm response by soils. Nature, 2010, 464, 499-500.	27.8	91
183	A global assessment of the effects of climate policy on the impacts of climate change. Nature Climate Change, 2013, 3, 512-519.	18.8	91
184	Cost-effective opportunities for climate change mitigation in Indian agriculture. Science of the Total Environment, 2019, 655, 1342-1354.	8.0	89
185	The impacts of climate change across the globe: A multi-sectoral assessment. Climatic Change, 2016, 134, 457-474.	3.6	88
186	Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province. Global Change Biology, 2009, 15, 861-875.	9.5	86
187	Reâ€framing the climate change debate in the livestock sector: mitigation and adaptation options. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 869-892.	8.1	83
188	Nitrous oxide fluxes and denitrification sensitivity to temperature in Irish pasture soils. Soil Use and Management, 2009, 25, 376-388.	4.9	82
189	Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Global Change Biology, 2018, 24, 5590-5606.	9.5	81
190	Greenhouse gas mitigation in Chinese agriculture: Distinguishing technical and economic potentials. Global Environmental Change, 2014, 26, 53-62.	7.8	80
191	Ecological impacts of wind farms on birds: Questions, hypotheses, and research needs. Renewable and Sustainable Energy Reviews, 2015, 44, 599-607.	16.4	80
192	Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy, 2018, 10, 150-164.	5.6	80
193	Nitrogen application rates need to be reduced for half of the rice paddy fields in China. Agriculture, Ecosystems and Environment, 2018, 265, 8-14.	5.3	80
194	Agricultural greenhouse gas mitigation potential globally, in <scp>E</scp> urope and in the <scp>UK</scp> : what have we learnt in the last 20Âyears?. Global Change Biology, 2012, 18, 35-43.	9.5	79
195	Soil carbon, multiple benefits. Environmental Development, 2015, 13, 33-38.	4.1	75
196	Assessing the combined use of reduced tillage and cover crops for mitigating greenhouse gas emissions from arable ecosystem. Geoderma, 2014, 223-225, 9-20.	5.1	72
197	Increase in soil organic carbon by agricultural intensification in northern China. Biogeosciences, 2015, 12, 1403-1413.	3.3	72
198	Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agriculture, Ecosystems and Environment, 2022, 330, 107891.	5.3	72

#	Article	IF	CITATIONS
199	Stability of Social Status in Wild Rats: Age and the Role of Settled Dominance. Behaviour, 1995, 132, 193-212.	0.8	71
200	Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. Agriculture, Ecosystems and Environment, 2010, 139, 293-301.	5.3	71
201	Modeling Carbon and Nitrogen Processes in Soils. Advances in Agronomy, 1997, 62, 253-298.	5.2	70
202	Soil biota and global change at the ecosystem level: describing soil biota in mathematical models. Global Change Biology, 1998, 4, 773-784.	9.5	70
203	A European network of long-term sites for studies on soil organic matter. Soil and Tillage Research, 1998, 47, 263-274.	5.6	70
204	Application of the DNDC model to predict emissions of N2O from Irish agriculture. Geoderma, 2009, 151, 327-337.	5.1	70
205	Human-Soil Relations are Changing Rapidly: Proposals from SSSA's Cross-Divisional Soil Change Working Group. Soil Science Society of America Journal, 2011, 75, 2079-2084.	2.2	70
206	A comparison of carbon accounting tools for arable crops in the United Kingdom. Environmental Modelling and Software, 2013, 46, 228-239.	4.5	70
207	The impact of interventions in the global land and agriâ€food sectors on Nature's Contributions to People and the UN Sustainable Development Goals. Global Change Biology, 2020, 26, 4691-4721.	9.5	70
208	Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions. Agronomy for Sustainable Development, 2008, 28, 465-472.	5.3	69
209	Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Efficiency, 2009, 2, 195-206.	2.8	68
210	RothCUK ? a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use and Management, 2006, 22, 274-288.	4.9	67
211	Projected changes in the organic carbon stocks of cropland mineral soils of European Russia and the Ukraine, 1990?2070. Global Change Biology, 2007, 13, 342-356.	9.5	67
212	Biochar has no effect on soil respiration across Chinese agricultural soils. Science of the Total Environment, 2016, 554-555, 259-265.	8.0	67
213	Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 2018, 4, eaau3523.	10.3	67
214	Agriculture, Forestry and Other Land Use (AFOLU). , 2015, , 811-922.		66
215	Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy, 2017, 9, 541-556.	5.6	66
216	Environmental impacts and production performances of organic agriculture in China: A monetary valuation. Journal of Environmental Management, 2017, 188, 49-57.	7.8	66

#	Article	IF	CITATIONS
217	Does Soil Carbon Loss in Biomass Production Systems Negate the Greenhouse Benefits of Bioenergy?. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 979-1002.	2.1	65
218	Widespread decreases in topsoil inorganic carbon stocks across <scp>C</scp> hina's grasslands during 1980s–2000s. Global Change Biology, 2012, 18, 3672-3680.	9.5	65
219	Simulation of soil nitrogen, nitrous oxide emissions and mitigation scenarios at 3 European cropland sites using the ECOSSE model. Nutrient Cycling in Agroecosystems, 2012, 92, 161-181.	2.2	65
220	Characterising the biophysical, economic and social impacts of soil carbon sequestration as a greenhouse gas removal technology. Global Change Biology, 2020, 26, 1085-1108.	9.5	65
221	Can cropland management practices lower net greenhouse emissions without compromising yield?. Global Change Biology, 2021, 27, 4657-4670.	9.5	65
222	The technical potential of <scp>G</scp> reat <scp>B</scp> ritain to produce lignoâ€eellulosic biomass for bioenergy in current and future climates. GCB Bioenergy, 2014, 6, 108-122.	5.6	64
223	The flux of DOC from the UK – Predicting the role of soils, land use and net watershed losses. Journal of Hydrology, 2012, 448-449, 149-160.	5.4	63
224	Stoichiometric shifts in surface soils over broad geographical scales: evidence from <scp>C</scp> hina's grasslands. Global Ecology and Biogeography, 2014, 23, 947-955.	5.8	63
225	Forests and Decarbonization – Roles of Natural and Planted Forests. Frontiers in Forests and Global Change, 2020, 3, .	2.3	63
226	Technologies to deliver food and climate security through agriculture. Nature Plants, 2021, 7, 250-255.	9.3	63
227	Assessing the vulnerability of blanket peat to climate change using an ensemble of statistical bioclimatic envelope models. Climate Research, 2010, 45, 131-150.	1.1	63
228	Assessing the potential of soil carbonation and enhanced weathering through Life Cycle Assessment: A case study for Sao Paulo State, Brazil. Journal of Cleaner Production, 2019, 233, 468-481.	9.3	62
229	Modelling changes in soil organic matter after planting fastâ€growing <i>Pinus radiata</i> on Mediterranean agricultural soils. European Journal of Soil Science, 2000, 51, 627-641.	3.9	61
230	Climatic and Edaphic Controls on Soil pH in Alpine Grasslands on the Tibetan Plateau, China: A Quantitative Analysis. Pedosphere, 2014, 24, 39-44.	4.0	61
231	Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action. Global Change Biology, 2014, 20, 1-6.	9.5	61
232	Global change synergies and tradeâ€offs between renewable energy and biodiversity. GCB Bioenergy, 2016, 8, 941-951.	5.6	61
233	Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Cuadernos De Investigacion Geografica, 2019, 45, 271-286.	1.1	61
234	Development of molecular markers using MFLP linked to a gene conferring resistance to Diaporthe toxica in narrow-leafed lupin (Lupinus angustifolius L.). Theoretical and Applied Genetics, 2002, 105, 265-270.	3.6	60

#	Article	IF	CITATIONS
235	Bayesian calibration as a tool for initialising the carbon pools of dynamic soil models. Soil Biology and Biochemistry, 2009, 41, 2579-2583.	8.8	60
236	Introducing a Decomposition Rate Modifier in the Rothamsted Carbon Model to Predict Soil Organic Carbon Stocks in Saline Soils. Environmental Science & Technology, 2011, 45, 6396-6403.	10.0	60
237	Protein futures for Western Europe: potential land use and climate impacts in 2050. Regional Environmental Change, 2017, 17, 367-377.	2.9	60
238	The role of peatlands in climate regulation. , 2016, , 63-76.		59
239	Invited review: Intergovernmental Panel on Climate Change, agriculture, and food—A case of shifting cultivation and history. Clobal Change Biology, 2019, 25, 2518-2529.	9.5	59
240	Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol. Soil Use and Management, 2004, 20, 264-270.	4.9	59
241	Management effects on European cropland respiration. Agriculture, Ecosystems and Environment, 2010, 139, 346-362.	5.3	58
242	Greenhouse gas emissions and water footprints of typical dietary patterns in India. Science of the Total Environment, 2018, 643, 1411-1418.	8.0	58
243	Foraging behaviour of wild rats (Rattus norvegicus) towards new foods and bait containers. Applied Animal Behaviour Science, 1996, 47, 175-190.	1.9	57
244	Comparison of approaches for estimating carbon sequestration at the regional scale. Soil Use and Management, 2002, 18, 164-174.	4.9	57
245	Adopting soil organic carbon management practices in soils of varying quality: Implications and perspectives in Europe. Soil and Tillage Research, 2017, 165, 95-106.	5.6	57
246	Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use and Management, 2003, 19, 265-269.	4.9	56
247	The environmental impact of nutrition transition in three case study countries. Food Security, 2015, 7, 493-504.	5.3	56
248	Potential impacts on ecosystem services of land use transitions to secondâ€generation bioenergy crops in <scp>GB</scp> . GCB Bioenergy, 2016, 8, 317-333.	5.6	56
249	Size and variability of crop productivity both impacted by CO2 enrichment and warming—A case study of 4 year field experiment in a Chinese paddy. Agriculture, Ecosystems and Environment, 2016, 221, 40-49.	5.3	56
250	Soil quality both increases crop production and improves resilience to climate change. Nature Climate Change, 2022, 12, 574-580.	18.8	56
251	Meeting the UK's climate change commitments: options for carbon mitigation on agricultural land. Soil Use and Management, 2000, 16, 1-11.	4.9	55
252	Uncertainty propagation in soil greenhouse gas emission models: An experiment using the DNDC model and at the Oensingen cropland site. Agriculture, Ecosystems and Environment, 2010, 136, 97-110.	5.3	55

#	Article	IF	CITATIONS
253	The carbon balance of European croplands: A cross-site comparison of simulation models. Agriculture, Ecosystems and Environment, 2010, 139, 419-453.	5.3	55
254	The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20210084.	4.0	55
255	A linked carbon cycle and crop developmental model: Description and evaluation against measurements of carbon fluxes and carbon stocks at several European agricultural sites. Agriculture, Ecosystems and Environment, 2010, 139, 402-418.	5.3	54
256	Modelling the perennial energy crop market: the role of spatial diffusion. Journal of the Royal Society Interface, 2013, 10, 20130656.	3.4	54
257	Total global agricultural land footprint associated with UK food supply 1986–2011. Global Environmental Change, 2017, 43, 72-81.	7.8	53
258	Co-benefits and trade-offs of climate change mitigation actions and the Sustainable Development Goals. Sustainable Production and Consumption, 2021, 26, 805-813.	11.0	53
259	Climate- and crop-responsive emission factors significantly alter estimates of current and future nitrous oxide emissions from fertilizer use. Global Change Biology, 2005, 11, 1522-1536.	9.5	52
260	Ensemble modelling, uncertainty and robust predictions of organic carbon in longâ€ŧerm bareâ€fallow soils. Global Change Biology, 2021, 27, 904-928.	9.5	52
261	Environmental impacts of dietary shifts in India: A modelling study using nationally-representative data. Environment International, 2019, 126, 207-215.	10.0	51
262	Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 2022, 28, 2846-2874.	9.5	51
263	Continental Drift: Continental Drift and the Age of Angiosperm Genera. Nature, 1965, 207, 48-50.	27.8	50
264	How important is inert organic matter for predictive soil carbon modelling using the Rothamsted carbon model?. Soil Biology and Biochemistry, 2000, 32, 433-436.	8.8	50
265	Soil C storage as affected by tillage and straw management: An assessment using field measurements and model predictions. Agriculture, Ecosystems and Environment, 2011, 140, 218-225.	5.3	50
266	Quantifying global greenhouse gas emissions from landâ€use change for crop production. Global Change Biology, 2012, 18, 1622-1635.	9.5	50
267	What is the potential for biogas digesters to improve soil fertility and crop production in Sub-Saharan Africa?. Biomass and Bioenergy, 2014, 70, 58-72.	5.7	50
268	Effects of plateau pika activities on seasonal plant biomass and soil properties in the alpine meadow ecosystems of the Tibetan Plateau. Grassland Science, 2015, 61, 195-203.	1.1	50
269	Ensemble modelling of carbon fluxes in grasslands and croplands. Field Crops Research, 2020, 252, 107791.	5.1	50
270	Highâ€resolution spatial modelling of greenhouse gas emissions from landâ€use change to energy crops in the United Kingdom. GCB Bioenergy, 2017, 9, 627-644.	5.6	47

#	Article	IF	CITATIONS
271	Deriving Emission Factors and Estimating Direct Nitrous Oxide Emissions for Crop Cultivation in China. Environmental Science & amp; Technology, 2019, 53, 10246-10257.	10.0	47
272	Models in country scale carbon accounting of forest soils. Silva Fennica, 2007, 41, .	1.3	47
273	Incorporating microorganisms as decomposers into models to simulate soil organic matter decomposition. Geoderma, 2005, 129, 139-146.	5.1	46
274	Using agent-based modelling to simulate social-ecological systems across scales. GeoInformatica, 2019, 23, 269-298.	2.7	46
275	Weakened growth of croplandâ€N ₂ O emissions in China associated with nationwide policy interventions. Global Change Biology, 2019, 25, 3706-3719.	9.5	46
276	Is the expansion of sugarcane over pasturelands a sustainable strategy for Brazil's bioenergy industry?. Renewable and Sustainable Energy Reviews, 2019, 102, 346-355.	16.4	46
277	An Integrated Framework to Assess Greenwashing. Sustainability, 2022, 14, 4431.	3.2	46
278	Preliminary assessment of the potential for, and limitations to, terrestrial negative emission technologies in the UK. Environmental Sciences: Processes and Impacts, 2016, 18, 1400-1405.	3.5	45
279	Extent to which pH and topographic factors control soil organic carbon level in dry farming cropland soils of the mountainous region of Southwest China. Catena, 2018, 163, 204-209.	5.0	45
280	Methane and Global Environmental Change. Annual Review of Environment and Resources, 2018, 43, 165-192.	13.4	45
281	Managing field margins for biodiversity and carbon sequestration: a Great Britain case study. Soil Use and Management, 2004, 20, 240-247.	4.9	45
282	Simulation of carbon and nitrogen dynamics in arable soils: a comparison of approaches. European Journal of Agronomy, 2002, 18, 107-120.	4.1	44
283	The potential distribution of bioenergy crops in the UK under present and future climate. Biomass and Bioenergy, 2010, 34, 1935-1945.	5.7	44
284	Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soilâ€specific predictions from integrated empirical models. Global Change Biology, 2012, 18, 1880-1894.	9.5	44
285	Sustainable use of organic resources for bioenergy, food and water provision in rural Sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 2015, 50, 903-917.	16.4	44
286	"More crop per drop― Exploring India's cereal water use since 2005. Science of the Total Environment, 2019, 673, 207-217.	8.0	44
287	Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Scientific Reports, 2020, 10, 19479.	3.3	44
288	Carbon flow in an upland grassland: effect of liming on the flux of recently photosynthesized carbon to rhizosphere soil. Global Change Biology, 2004, 10, 2100-2108.	9.5	43

#	Article	IF	CITATIONS
289	Assessing the potential for biomass energy to contribute to Scotland's renewable energy needs. Biomass and Bioenergy, 2005, 29, 73-82.	5.7	43
290	The economics of soil C sequestration and agricultural emissions abatement. Soil, 2015, 1, 331-339.	4.9	43
291	Carbon implications of converting cropland to bioenergy crops or forest for climate mitigation: a global assessment. GCB Bioenergy, 2016, 8, 81-95.	5.6	43
292	Considering agriculture in IPCC assessments. Nature Climate Change, 2017, 7, 680-683.	18.8	43
293	Natural Climate Solutions for China: The Last Mile to Carbon Neutrality. Advances in Atmospheric Sciences, 2021, 38, 889-895.	4.3	43
294	Bioenergy for climate change mitigation: Scale and sustainability. GCB Bioenergy, 2021, 13, 1346-1371.	5.6	43
295	Global cropland and greenhouse gas impacts of UK food supply are increasingly located overseas. Journal of the Royal Society Interface, 2016, 13, 20151001.	3.4	42
296	The influence of nutrient management on soil organic carbon storage, crop production, and yield stability varies under different climates. Journal of Cleaner Production, 2020, 268, 121922.	9.3	42
297	Estimating changes in Scottish soil carbon stocks using ECOSSE. II. Application. Climate Research, 2010, 45, 193-205.	1.1	42
298	Effect of natural and agricultural factors on long-term soil organic matter dynamics in arable soddy-podzolic soils—modeling and observation. Geoderma, 2003, 116, 165-189.	5.1	41
299	Simulation of Salinity Effects on Past, Present, and Future Soil Organic Carbon Stocks. Environmental Science & Technology, 2012, 46, 1624-1631.	10.0	41
300	Carbon saturation and assessment of soil organic carbon fractions in Mediterranean rainfed olive orchards under plant cover management. Agriculture, Ecosystems and Environment, 2017, 245, 135-146.	5.3	41
301	The use of biogeochemical models to evaluate mitigation of greenhouse gas emissions from managed grasslands. Science of the Total Environment, 2018, 642, 292-306.	8.0	41
302	Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. Methods in Ecology and Evolution, 2019, 10, 146-157.	5.2	41
303	Sensitivity of crop model predictions to entire meteorological and soil input datasets highlights vulnerability to drought. Environmental Modelling and Software, 2012, 29, 37-43.	4.5	40
304	Long-term marginal abatement cost curves of non-CO2 greenhouse gases. Environmental Science and Policy, 2019, 99, 136-149.	4.9	40
305	Civil disobedience movements such as School Strike for the Climate are raising public awareness of the climate change emergency. Clobal Change Biology, 2020, 26, 1042-1044.	9.5	40
306	Essential outcomes for COP26. Global Change Biology, 2022, 28, 1-3.	9.5	40

#	Article	IF	CITATIONS
307	Climate change mitigation options in the rural land use sector: Stakeholders' perspectives on barriers, enablers and the role of policy in North East Scotland. Environmental Science and Policy, 2014, 44, 26-38.	4.9	39
308	Initial soil C and landâ€use history determine soil C sequestration under perennial bioenergy crops. GCB Bioenergy, 2016, 8, 1046-1060.	5.6	39
309	Carbon emission avoidance and capture by producing in-reactor microbial biomass based food, feed and slow release fertilizer: Potentials and limitations. Science of the Total Environment, 2018, 644, 1525-1530.	8.0	39
310	The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 2019, 10, 4195.	12.8	39
311	How has soil carbon stock changed over recent decades?. Global Change Biology, 2015, 21, 3197-3199.	9.5	38
312	The potential for implementation of Negative Emission Technologies in Scotland. International Journal of Greenhouse Gas Control, 2018, 76, 85-91.	4.6	38
313	Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors. Environmental Pollution, 2020, 259, 113864.	7.5	38
314	Developing carbon budgets for UK agriculture, land-use, land-use change and forestry out to 2022. Climatic Change, 2011, 105, 529-553.	3.6	37
315	Global Hotspots of Conflict Risk between Food Security and Biodiversity Conservation. Land, 2017, 6, 67.	2.9	37
316	Is resistant soil organic matter more sensitive to temperature than the labile organic matter?. Biogeosciences, 2006, 3, 65-68.	3.3	36
317	How does bioenergy compare with other land-based renewable energy sources globally?. GCB Bioenergy, 2013, 5, 513-524.	5.6	36
318	Net carbon storage measured in a mowed and grazed temperate sown grassland shows potential for carbon sequestration under grazed system. Carbon Management, 2014, 5, 131-144.	2.4	36
319	Soil Organic Carbon and Nitrogen Feedbacks on Crop Yields under Climate Change. Agricultural and Environmental Letters, 2018, 3, 180026.	1.2	36
320	Establishing a European GCTE Soil Organic Matter Network (SOMNET). , 1996, , 81-97.		36
321	Projected health effects of realistic dietary changes to address freshwater constraints in India: a modelling study. Lancet Planetary Health, The, 2017, 1, e26-e32.	11.4	35
322	The changing faces of soil organic matter research. European Journal of Soil Science, 2018, 69, 23-30.	3.9	35
323	Advancing national greenhouse gas inventories for agriculture in developing countries: improving activity data, emission factors and software technology. Environmental Research Letters, 2013, 8, 015030.	5.2	34
324	Including trace gas fluxes in estimates of the carbon mitigation potential of UK agricultural land. Soil Use and Management, 2000, 16, 251-259.	4.9	33

#	Article	IF	CITATIONS
325	Assessing existing peatland models for their applicability for modelling greenhouse gas emissions from tropical peat soils. Current Opinion in Environmental Sustainability, 2011, 3, 339-349.	6.3	33
326	Cleaning up nitrogen pollution may reduce future carbon sinks. Global Environmental Change, 2018, 48, 56-66.	7.8	33
327	Calibration and validation of the DNDC model to estimate nitrous oxide emissions and crop productivity for a summer maize-winter wheat double cropping system in Hebei, China. Environmental Pollution, 2020, 262, 114199.	7.5	33
328	The role of measurement uncertainties for the simulation of grassland net ecosystem exchange (NEE) in Europe. Agriculture, Ecosystems and Environment, 2007, 121, 175-185.	5.3	32
329	What is the potential for biogas digesters to improve soil carbon sequestration in Sub-Saharan Africa? Comparison with other uses of organic residues. Biomass and Bioenergy, 2014, 70, 73-86.	5.7	32
330	GHG mitigation of agricultural peatlands requires coherent policies. Climate Policy, 2016, 16, 522-541.	5.1	32
331	A systematic analysis and review of the impacts of afforestation on soil quality indicators as modified by climate zone, forest type and age. Science of the Total Environment, 2021, 757, 143824.	8.0	32
332	EuroSOMNET–Âa European database of long-term experiments on soil organic matter: the WWW metadatabase. Journal of Agricultural Science, 2002, 138, 123-134.	1.3	31
333	Meeting the challenge of scaling up processes in the plant–soil–microbe system. Biology and Fertility of Soils, 2007, 44, 245-257.	4.3	31
334	Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain. Soil Use and Management, 2010, 26, 381-398.	4.9	31
335	Methane and nitrous oxide fluxes across an elevation gradient in the tropical Peruvian Andes. Biogeosciences, 2014, 11, 2325-2339.	3.3	31
336	Soil and tree biomass carbon sequestration potential of silvopastoral and woodland-pasture systems in North East Scotland. Agroforestry Systems, 2016, 90, 371-383.	2.0	31
337	Soil Organic Carbon (SOC) Equilibrium and Model Initialisation Methods: an Application to the Rothamsted Carbon (RothC) Model. Environmental Modeling and Assessment, 2017, 22, 215-229.	2.2	31
338	Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Global Environmental Change, 2021, 69, 102319.	7.8	31
339	Climate change may interact with nitrogen fertilizer management leading to different ammonia loss in China's croplands. Global Change Biology, 2021, 27, 6525-6535.	9.5	31
340	Soils as carbon sinks: the global context. Soil Use and Management, 2004, 20, 212-218.	4.9	30
341	Simulating the impacts of land use in Northwest Europe on Net Ecosystem Exchange (NEE): The role of arable ecosystems, grasslands and forest plantations in climate change mitigation. Science of the Total Environment, 2013, 465, 325-336.	8.0	30
342	Comparison of methods for quantifying soil carbon in tropical peats. Geoderma, 2014, 214-215, 177-183.	5.1	30

#	Article	IF	CITATIONS
343	Modelling nitrous oxide emissions from mown-grass and grain-cropping systems: Testing and sensitivity analysis of DailyDayCent using high frequency measurements. Science of the Total Environment, 2016, 572, 955-977.	8.0	30
344	A <i>Miscanthus</i> plantation can be carbon neutral without increasing soil carbon stocks. GCB Bioenergy, 2017, 9, 645-661.	5.6	30
345	Quantifying terrestrial carbon stocks: examining the spatial variation in two upland areas in the UK and a comparison to mapped estimates of soil carbon. Soil Use and Management, 2009, 25, 320-332.	4.9	29
346	Predicting changes in soil organic carbon in mediterranean and alpine forests during the Kyoto Protocol commitment periods using the CENTURY model. Soil Use and Management, 2010, 26, 475-484.	4.9	29
347	Greenhouse gas emissions and mitigation potential from fertilizer manufacture and application in India. International Journal of Agricultural Sustainability, 2010, 8, 176-185.	3.5	29
348	Estimating net primary production and annual plant carbon inputs, and modelling future changes in soil carbon stocks in arable farmlands of northern Japan. Agriculture, Ecosystems and Environment, 2011, 144, 51-60.	5.3	29
349	The potential for bioenergy crops to contribute to meeting GB heat and electricity demands. GCB Bioenergy, 2014, 6, 136-141.	5.6	29
350	A coupled hydrology–biogeochemistry model to simulate dissolved organic carbon exports from a permafrostâ€influenced catchment. Hydrological Processes, 2015, 29, 5383-5396.	2.6	29
351	Assessment of ecosystem services of rice farms in eastern India. Ecological Processes, 2019, 8, .	3.9	29
352	Soil carbon sequestration in grazing systems: managing expectations. Climatic Change, 2020, 161, 385-391.	3.6	29
353	Synergies and tradeâ€offs between renewable energy expansion and biodiversity conservation – a crossâ€national multifactor analysis. GCB Bioenergy, 2016, 8, 1191-1200.	5.6	28
354	Towards more predictive and interdisciplinary climate change ecosystem experiments. Nature Climate Change, 2019, 9, 809-816.	18.8	28
355	Soil organic carbon and nitrogen pools are increased by mixed grass and legume cover crops in vineyard agroecosystems: Detecting short-term management effects using infrared spectroscopy. Geoderma, 2020, 379, 114619.	5.1	28
356	How do we best synergize climate mitigation actions to coâ€benefit biodiversity?. Global Change Biology, 2022, 28, 2555-2577.	9.5	28
357	Declines in soil carbon storage under no tillage can be alleviated in the long run. Geoderma, 2022, 425, 116028.	5.1	28
358	Changes in mineral soil organic carbon stocks in the croplands of European Russia and the Ukraine, 1990–2070; comparison of three models and implications for climate mitigation. Regional Environmental Change, 2007, 7, 105-119.	2.9	27
359	Estimating UK perennial energy crop supply using farmâ€scale models with spatially disaggregated data. GCB Bioenergy, 2014, 6, 142-155.	5.6	27
360	The challenge of modelling nitrogen management at the field scale: simulation and sensitivity analysis of N ₂ O fluxes across nine experimental sites using DailyDayCent. Environmental Research Letters, 2014, 9, 095003.	5.2	27

#	Article	IF	CITATIONS
361	Identifying secure and low carbon food production practices: A case study in Kenya and Ethiopia. Agriculture, Ecosystems and Environment, 2014, 197, 137-146.	5.3	27
362	Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands. European Journal of Agronomy, 2017, 88, 41-52.	4.1	27
363	Simulating soil carbon sequestration from long term fertilizer and manure additions under continuous wheat using the DailyDayCent model. Nutrient Cycling in Agroecosystems, 2017, 109, 291-302.	2.2	27
364	Evaluation of four modelling approaches to estimate nitrous oxide emissions in China's cropland. Science of the Total Environment, 2019, 652, 1279-1289.	8.0	27
365	A deep dive into the modelling assumptions for biomass with carbon capture and storage (BECCS): a transparency exercise. Environmental Research Letters, 2020, 15, 084008.	5.2	27
366	Considering Manure and Carbon Sequestration. Science, 2000, 287, 427e-427.	12.6	27
367	Bridging the gap between energy and the environment. Energy Policy, 2016, 92, 181-189.	8.8	26
368	Impacts of natural factors and farming practices on greenhouse gas emissions in the North China Plain: A metaâ€analysis. Ecology and Evolution, 2017, 7, 6702-6715.	1.9	26
369	Re-assessing nitrous oxide emissions from croplands across Mainland China. Agriculture, Ecosystems and Environment, 2018, 268, 70-78.	5.3	26
370	Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh. Geoderma, 2019, 341, 206-215.	5.1	26
371	Potential yield challenges to scale-up of zero budget natural farming. Nature Sustainability, 2020, 3, 247-252.	23.7	26
372	1,135 ionomes reveal the global pattern of leaf and seed mineral nutrient and trace element diversity in <i>Arabidopsis thaliana</i> . Plant Journal, 2021, 106, 536-554.	5.7	26
373	Simulation of soil organic carbon response at forest cultivation sequences using 13C measurements. Organic Geochemistry, 2010, 41, 41-54.	1.8	25
374	Disaggregated N 2 O emission factors in China based on cropping parameters create a robust approach to the IPCC Tier 2 methodology. Atmospheric Environment, 2015, 122, 272-281.	4.1	25
375	Malthus is still wrong: we can feed a world of 9–10 billion, but only by reducing food demand. Proceedings of the Nutrition Society, 2015, 74, 187-190.	1.0	25
376	The density of active burrows of plateau pika in relation to biomass allocation in the alpine meadow ecosystems of the Tibetan Plateau. Biochemical Systematics and Ecology, 2015, 58, 257-264.	1.3	25
377	Managing the global land resource. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172798.	2.6	25
378	Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback. Environmental Research Letters, 2018, 13, 034024.	5.2	25

#	Article	IF	CITATIONS
379	Modelling changes in soil organic matter after planting fast-growing Pinus radiata on Mediterranean agricultural soils. European Journal of Soil Science, 2000, 51, 627-641.	3.9	25
380	Assessing the carbon capture potential of a reforestation project. Scientific Reports, 2021, 11, 19907.	3.3	25
381	A new scheme for initializing process-based ecosystem models by scaling soil carbon pools. Ecological Modelling, 2011, 222, 3598-3602.	2.5	24
382	Assessing the sensitivity of modelled estimates of N2O emissions and yield to input uncertainty at a UK cropland experimental site using the DailyDayCent model. Nutrient Cycling in Agroecosystems, 2014, 99, 119-133.	2.2	24
383	Effect of spatial data resolution on uncertainty. Environmental Modelling and Software, 2015, 63, 87-96.	4.5	24
384	Impacts on terrestrial biodiversity of moving from a 2°C to a 1.5°C target. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160456.	3.4	24
385	Ecosystem services in different agro-climatic zones in eastern India: impact of land use and land cover change. Environmental Monitoring and Assessment, 2019, 191, 98.	2.7	24
386	The increase of rainfall erosivity and initial soil erosion processes due to rainfall acidification. Hydrological Processes, 2019, 33, 261-270.	2.6	24
387	Impacts of enhanced weathering on biomass production for negative emission technologies and soil hydrology. Biogeosciences, 2020, 17, 2107-2133.	3.3	24
388	Localization of carbonic anhydrase in legume nodules. Plant, Cell and Environment, 2001, 24, 317-326.	5.7	23
389	An optimization model for energy crop supply. GCB Bioenergy, 2012, 4, 88-95.	5.6	23
390	Effects of long-term tillage and drainage treatments on greenhouse gas fluxes from a corn field during the fallow period. Agriculture, Ecosystems and Environment, 2013, 171, 112-123.	5.3	23
391	Mitigation potential and environmental impact of centralized versus distributed BECCS with domestic biomass production in Great Britain. GCB Bioenergy, 2019, 11, 1234-1252.	5.6	23
392	The consolidated European synthesis of CO ₂ emissions and removals for the European Union and United Kingdom: 1990–2018. Earth System Science Data, 2021, 13, 2363-2406.	9.9	23
393	Emerging reporting and verification needs under the Paris Agreement: How can the research community effectively contribute?. Environmental Science and Policy, 2021, 122, 116-126.	4.9	23
394	Detecting tents to estimate the displaced populations for post-disaster relief using high resolution satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 2015, 36, 87-93.	2.8	22
395	An anticipatory life cycle assessment of the use of biochar from sugarcane residues as a greenhouse gas removal technology. Journal of Cleaner Production, 2021, 312, 127764.	9.3	22
396	Deceleration of Cropland-N ₂ O Emissions in China and Future Mitigation Potentials. Environmental Science & Technology, 2022, 56, 4665-4675.	10.0	22

#	Article	IF	CITATIONS
397	Can Regenerative Agriculture increase national soil carbon stocks? Simulated country-scale adoption of reduced tillage, cover cropping, and ley-arable integration using RothC. Science of the Total Environment, 2022, 825, 153955.	8.0	22
398	Economic and greenhouse gas costs of <i>Miscanthus</i> supply chains in the <scp>United Kingdom</scp> . GCB Bioenergy, 2012, 4, 358-363.	5.6	21
399	Reâ€evaluating the biophysical and technologically attainable potential of topsoil carbon sequestration in <scp>C</scp> hina's cropland. Soil Use and Management, 2013, 29, 501-509.	4.9	21
400	Simulation of CO2 and Attribution Analysis at Six European Peatland Sites Using the ECOSSE Model. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	21
401	Modelling heat, water and carbon fluxes in mown grassland under multi-objective and multi-criteria constraints. Environmental Modelling and Software, 2016, 80, 201-224.	4.5	21
402	Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh. Land, 2018, 7, 82.	2.9	21
403	Simulation of Soil Organic Carbon Effects on Long-Term Winter Wheat (Triticum aestivum) Production Under Varying Fertilizer Inputs. Frontiers in Plant Science, 2018, 9, 1158.	3.6	21
404	Global Research Alliance N ₂ O chamber methodology guidelines: Summary of modeling approaches. Journal of Environmental Quality, 2020, 49, 1168-1185.	2.0	21
405	Comparing the impact of future cropland expansion on global biodiversity and carbon storage across models and scenarios. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190189.	4.0	21
406	Agricultural methane emissions and the potential formitigation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200451.	3.4	21
407	A New Aspect of Warfarin Resistance in Wild Rats: Benefits in the Absence of Poison. Functional Ecology, 1993, 7, 190.	3.6	20
408	Soil organic carbon dynamics of croplands in European Russia: estimates from the "model of humus balance― Regional Environmental Change, 2007, 7, 93-104.	2.9	20
409	A comparison of GHG emissions from UK field crop production under selected arable systems with reference to disease control. European Journal of Plant Pathology, 2012, 133, 333-351.	1.7	20
410	Enabling food security by verifying agricultural carbon. Nature Climate Change, 2014, 4, 309-311.	18.8	20
411	Modelling the carbon cycle of <i>Miscanthus</i> plantations: existing models and the potential for their improvement. GCB Bioenergy, 2015, 7, 405-421.	5.6	20
412	Not seeing the carbon for the trees? Why area-based targets for establishing new woodlands can limit or underplay their climate change mitigation benefits. Land Use Policy, 2020, 97, 104690.	5.6	20
413	Delayed impact of natural climate solutions. Global Change Biology, 2021, 27, 215-217.	9.5	20
414	EuroSOMNET—a database for long-term experiments on soil organic matter in Europe. Computers and Electronics in Agriculture, 2002, 33, 233-239.	7.7	19

#	Article	IF	CITATIONS
415	Sectoral approaches to improve regional carbon budgets. Climatic Change, 2008, 88, 209-249.	3.6	19
416	Spatial mapping of building energy demand in <scp>G</scp> reat <scp>B</scp> ritain. GCB Bioenergy, 2014, 6, 123-135.	5.6	19
417	An agentâ€based modelling approach to evaluate factors influencing bioenergy crop adoption in northâ€east Scotland. GCB Bioenergy, 2016, 8, 226-244.	5.6	19
418	Simulation of greenhouse gases following landâ€use change to bioenergy crops using the <scp>ECOSSE</scp> model: aÂcomparison between site measurements and model predictions. GCB Bioenergy, 2016, 8, 925-940.	5.6	19
419	The potential to reduce GHG emissions in egg production using a GHG calculator – A Cool Farm Tool case study. Journal of Cleaner Production, 2018, 202, 1068-1076.	9.3	19
420	The relationship between forest cover and diet quality: a case study of rural southern Malawi. Food Security, 2019, 11, 635-650.	5.3	19
421	Sustainable futures over the next decade are rooted in soil science. European Journal of Soil Science, 2022, 73, .	3.9	19
422	A Cost of Resistance in the Brown Rat? Reduced Growth Rate in Warfarin-Resistant Lines. Functional Ecology, 1991, 5, 441.	3.6	18
423	Transport carbon costs do not negate the benefits of agricultural carbon mitigation options. Ecology Letters, 2000, 3, 379-381.	6.4	18
424	Selecting land-based mitigation practices to reduce GHG emissions from the rural land use sector: A case study of North East Scotland. Journal of Environmental Management, 2013, 120, 93-104.	7.8	18
425	Projections of changes in grassland soil organic carbon under climate change are relatively insensitive to methods of model initialization. European Journal of Soil Science, 2013, 64, 229-238.	3.9	18
426	Wind farms on undegraded peatlands are unlikely to reduce future carbon emissions. Energy Policy, 2014, 66, 585-591.	8.8	18
427	Sustainable energy crop production. Current Opinion in Environmental Sustainability, 2014, 9-10, 20-25.	6.3	18
428	Evaluation of the <scp>ECOSSE</scp> model for simulating soil organic carbon under <i><scp>M</scp>iscanthus</i> and short rotation coppiceâ€willow crops in <scp>B</scp> ritain. GCB Bioenergy, 2016, 8, 790-804.	5.6	18
429	Perennial-GHG: A new generic allometric model to estimate biomass accumulation and greenhouse gas emissions in perennial food and bioenergy crops. Environmental Modelling and Software, 2018, 102, 292-305.	4.5	18
430	Estimating ammonia emissions from cropland in China based on the establishment of agro-region-specific models. Agricultural and Forest Meteorology, 2021, 303, 108373.	4.8	18
431	Exploring the environmental impact of crop production in China using a comprehensive footprint approach. Science of the Total Environment, 2022, 824, 153898.	8.0	18
432	How Effective is Reduced Tillage–Cover Crop Management in Reducing N2O Fluxes from Arable Crop Soils?. Water, Air, and Soil Pollution, 2012, 223, 5155-5174.	2.4	17

#	Article	IF	CITATIONS
433	Identity-based estimation of greenhouse gas emissions from crop production: Case study from Denmark. European Journal of Agronomy, 2012, 41, 66-72.	4.1	17
434	Dual-chamber measurements of δ13C of soil-respired CO2 partitioned using a field-based three end-member model. Soil Biology and Biochemistry, 2012, 47, 106-115.	8.8	17
435	Modelling soil organic carbon storage with RothC in irrigated Vertisols under cotton cropping systems in the sub-tropics. Soil and Tillage Research, 2014, 143, 38-49.	5.6	17
436	Does metal pollution matter with C retention by rice soil?. Scientific Reports, 2015, 5, 13233.	3.3	17
437	ELUM: A spatial modelling tool to predict soil greenhouse gas changes from land conversion to bioenergy in the UK. Environmental Modelling and Software, 2016, 84, 458-466.	4.5	17
438	Potential carbon loss from Scottish peatlands under climate change. Regional Environmental Change, 2019, 19, 2101-2111.	2.9	17
439	Dynamics of pedogenic carbonate in the cropland of the North China Plain: Influences of intensive cropping and salinization. Agriculture, Ecosystems and Environment, 2020, 292, 106820.	5.3	17
440	Elevated CO2 does not necessarily enhance greenhouse gas emissions from rice paddies. Science of the Total Environment, 2022, 810, 152363.	8.0	17
441	Assessing scale effects on modelled soil organic carbon contents as a result of land use change in Belgium. Soil Use and Management, 2008, 24, 8-18.	4.9	16
442	Impact of crop yield reduction on greenhouse gas emissions from compensatory cultivation of pasture and forested land. International Journal of Agricultural Sustainability, 2010, 8, 164-175.	3.5	16
443	Food Security: Focus on Agriculture. Science, 2010, 328, 172-173.	12.6	16
444	Estimating the contribution of rural land uses to greenhouse gas emissions: A case study of North East Scotland. Environmental Science and Policy, 2013, 25, 36-49.	4.9	16
445	Is there an impact of climate change on soil carbon contents in <scp>E</scp> ngland and <scp>W</scp> ales?. European Journal of Soil Science, 2015, 66, 451-462.	3.9	16
446	Determining efficiency of energy input for silage corn production: An econometric approach. Energy, 2015, 93, 2166-2174.	8.8	16
447	Sustainability of wheat production in Southwest Iran: A fuzzy-GIS based evaluation by ANFIS. Cogent Food and Agriculture, 2017, 3, 1327682.	1.4	16
448	Bioenergy in the IPCC Assessments. GCB Bioenergy, 2018, 10, 428-431.	5.6	16
449	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	9.9	16
450	The role of soils in delivering Nature's Contributions to People. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200169.	4.0	16

#	Article	IF	CITATIONS
451	Climate change and the British Uplands: evidence for decision-making. Climate Research, 2010, 45, 3-12.	1.1	16
452	Body weight and social dominance in anticoagulant-resistant rats. Crop Protection, 1994, 13, 311-315.	2.1	15
453	UK land-use change and its impact on SOC: 1925-2007. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	4.9	15
454	Systems approaches in global change and biogeochemistry research. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 311-321.	4.0	15
455	Potential carbon stock in Japanese forest soils – simulated impact of forest management and climate change using the CENTURY model. Soil Use and Management, 2012, 28, 45-53.	4.9	15
456	Soil CO2–C flux and carbon storage in the dry tropics: Impact of land-use change involving bioenergy crop plantation. Biomass and Bioenergy, 2015, 83, 123-130.	5.7	15
457	Evaluating the Potential of Legumes to Mitigate N ₂ O Emissions From Permanent Grassland Using Processâ€Based Models. Global Biogeochemical Cycles, 2020, 34, e2020GB006561.	4.9	15
458	Soil-derived Nature's Contributions to People and their contribution to the UN Sustainable Development Goals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200185.	4.0	15
459	Achieving Net Zero Emissions Requires the Knowledge and Skills of the Oil and Gas Industry. Frontiers in Climate, 2020, 2, .	2.8	15
460	Food and feed trade has greatly impacted global land and nitrogen use efficiencies over 1961–2017. Nature Food, 2021, 2, 780-791.	14.0	15
461	China's low-emission pathways toward climate-neutral livestock production for animal-derived foods. Innovation(China), 2022, 3, 100220.	9.1	15
462	Letter to the Editor: Answer to the Viewpoint "Sequestering Soil Organic Carbon: A Nitrogen Dilemma― Environmental Science & Technology, 2017, 51, 11502-11502.	10.0	14
463	Modelling spatial and inter-annual variations of nitrous oxide emissions from UK cropland and grasslands using DailyDayCent. Agriculture, Ecosystems and Environment, 2017, 250, 1-11.	5.3	14
464	Moving beyond calories and protein: Micronutrient assessment of UK diets and land use. Global Environmental Change, 2018, 52, 108-116.	7.8	14
465	Managing field margins for biodiversity and carbon sequestration: a Great Britain case study. Soil Use and Management, 2004, 20, 240-247.	4.9	13
466	Marginal abatement cost curves for UK agriculture, forestry, land-use and land-use change sector out to 2022. IOP Conference Series: Earth and Environmental Science, 2009, 6, 242002.	0.3	13
467	Integrative management to mitigate diffuse pollution in multi-functional landscapes. Current Opinion in Environmental Sustainability, 2010, 2, 375-382.	6.3	13
468	Greenhouse gas mitigation potential of agricultural land in Great Britain. Soil Use and Management, 2011, 27, 491-501.	4.9	13

#	Article	IF	CITATIONS
469	Litter carbon inputs to the mineral soil of Japanese Brown forest soils: comparing estimates from the RothC model with estimates from MODIS. Journal of Forest Research, 2011, 16, 16-25.	1.4	13
470	Potential aerobic C mineralization of a red earth paddy soil and its temperature dependence under longâ€ŧerm fertilizer treatments. Soil Use and Management, 2012, 28, 185-193.	4.9	13
471	Reply to Leifeld et al.: Enhanced top soil carbon stocks under organic farming is not equated with climate change mitigation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E985.	7.1	13
472	Evaluation of the <scp>ECOSSE</scp> model for simulating soil carbon under short rotation forestry energy crops in Britain. GCB Bioenergy, 2015, 7, 527-540.	5.6	13
473	A global, empirical, harmonised dataset of soil organic carbon changes under perennial crops. Scientific Data, 2019, 6, 57.	5.3	13
474	Multimodel Evaluation of Nitrous Oxide Emissions From an Intensively Managed Grassland. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005261.	3.0	13
475	Current NPP cannot predict future soil organic carbon sequestration potential. Comment on "Photosynthetic limits on carbon sequestration in croplands― Geoderma, 2022, 424, 115975.	5.1	13
476	Direct N2O emissions from global tea plantations and mitigation potential by climate-smart practices. Resources, Conservation and Recycling, 2022, 185, 106501.	10.8	13
477	Global Research Alliance Modelling Platform (GRAMP): An open web platform for modelling greenhouse gas emissions from agro-ecosystems. Computers and Electronics in Agriculture, 2015, 111, 112-120.	7.7	12
478	Quantifying impacts of onshore wind farms on ecosystem services at local and global scales. Renewable and Sustainable Energy Reviews, 2015, 52, 1424-1428.	16.4	12
479	Modelling biological N fixation and grass-legume dynamics with process-based biogeochemical models of varying complexity. European Journal of Agronomy, 2019, 106, 58-66.	4.1	12
480	Impacts of land use and salinization on soil inorganic and organic carbon in the middle-lower Yellow River Delta. Pedosphere, 2021, 31, 839-848.	4.0	12
481	Food and nutrition security under global trade: a relation-driven agent-based global trade model. Royal Society Open Science, 2021, 8, 201587.	2.4	12
482	Landâ€based climate solutions for the United States. Global Change Biology, 2022, 28, 4912-4919.	9.5	12
483	Moving the British cattle herd. Nature, 1996, 381, 15-15.	27.8	11
484	Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol. Soil Use and Management, 2004, 20, 264-270.	4.9	11
485	Effect of household land management on cropland topsoil organic carbon storage at plot scale in a red earth soil area of South China. Journal of Agricultural Science, 2011, 149, 557-566.	1.3	11
486	Irrigation regime affected SOC content rather than plow layer thickness of rice paddies: A county level survey from a river basin in lower Yangtze valley, China. Agricultural Water Management, 2016, 172, 31-39.	5.6	11

#	Article	IF	CITATIONS
487	Mitigation and quantification of greenhouse gas emissions in Mediterranean cropping systems. Agriculture, Ecosystems and Environment, 2017, 238, 1-4.	5.3	11
488	Modelling daily to seasonal carbon fluxes and annual net ecosystem carbon balance of cereal grain-cropland using DailyDayCent: A model data comparison. Agriculture, Ecosystems and Environment, 2018, 252, 159-177.	5.3	11
489	Carbon uptake by European agricultural land is variable, and in many regions could be increased: Evidence from remote sensing, yield statistics and models of potential productivity. Science of the Total Environment, 2018, 643, 902-911.	8.0	11
490	Soil organic carbon sequestration and mitigation potential in a rice cropland in Bangladesh – a modelling approach. Field Crops Research, 2018, 226, 16-27.	5.1	11
491	Cropping leads to loss of soil organic matter: How can we prevent it?. Pedosphere, 2023, 33, 8-10.	4.0	11
492	Cost and potential of carbon abatement from the UK perennial energy crop market. GCB Bioenergy, 2014, 6, 156-168.	5.6	10
493	C and N models Intercomparison – benchmark and ensemble model estimates for grassland production. Advances in Animal Biosciences, 2016, 7, 245-247.	1.0	10
494	Carbon Inputs from Miscanthus Displace Older Soil Organic Carbon Without Inducing Priming. Bioenergy Research, 2017, 10, 86-101.	3.9	10
495	Female tamarins (Saguinus — Callitrichidae) feed more successfully than males in unfamiliar foraging tasks. Behavioural Processes, 1995, 34, 3-11.	1.1	9
496	Constructing regional scenarios for sustainable agriculture in European Russia and Ukraine for 2000 to 2070. Regional Environmental Change, 2007, 7, 63-77.	2.9	9
497	Soil Organic Carbon Dynamics and Land-Use Change. , 2008, , 9-22.		9
498	Comparison of approaches for estimating carbon sequestration at the regional scale. Soil Use and Management, 2002, 18, 164-174.	4.9	9
499	Surveying topographical changes and climate variations to detect the urban heat island in the city of Málaga (Spain). Cuadernos De Investigacion Geografica, 2020, 46, 521-543.	1.1	9
500	Evaluation of the DNDC Model to Estimate Soil Parameters, Crop Yield and Nitrous Oxide Emissions for Alternative Long-Term Multi-Cropping Systems in the North China Plain. Agronomy, 2022, 12, 109.	3.0	9
501	Soil inorganic carbon sequestration through alkalinity regeneration using biologically induced weathering of rock powder and biochar. Soil Ecology Letters, 2022, 4, 293-306.	4.5	9
502	Commentary: Agricultural measures for mitigating climate change: will the barriers prevent any benefits to developing countries?. International Journal of Agricultural Sustainability, 2006, 4, 173-175.	3.5	8
503	Modelling soil carbon dynamics. , 2010, , 221-244.		8
504	The Tropical Peatland Plantation-Carbon Assessment Tool: estimating CO2 emissions from tropical peat soils under plantations. Mitigation and Adaptation Strategies for Global Change, 2014, 19, 863-885.	2.1	8

#	Article	IF	CITATIONS
505	Comparison of carbon footprint and net ecosystem carbon budget under organic material retention combined with reduced mineral fertilizer. Carbon Balance and Management, 2021, 16, 7.	3.2	8
506	The role of soils in provision of energy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200180.	4.0	8
507	Constructing a nitrogen fertilizer recommendation system using a dynamic model: what do farmers want?. Soil Use and Management, 1997, 13, 225-228.	4.9	7
508	New Directions: The changing role of the terrestrial carbon sink in determining atmospheric CO2 concentrations. Atmospheric Environment, 2007, 41, 5813-5815.	4.1	7
509	Research Spotlight: The ELUM project: Ecosystem Land-Use Modeling and Soil Carbon GHG Flux Trial. Biofuels, 2014, 5, 111-116.	2.4	7
510	A framework for assessing the impacts on ecosystem services of energy provision in the UK: An example relating to the production and combustion life cycle of UK produced biomass crops (short) Tj ETQq0 0 C	r gB⊼ /Ove	erløck 10 Tf 5
511	Evaluation of the <scp>ECOSSE</scp> model to predict heterotrophic soil respiration by direct measurements. European Journal of Soil Science, 2017, 68, 384-393.	3.9	7
512	Projecting Soil C Under Future Climate and Land-Use Scenarios (Modeling). , 2018, , 281-309.		7
513	Interacting with Members of the Public to Discuss the Impact of Food Choices on Climate Change—Experiences from Two UK Public Engagement Events. Sustainability, 2020, 12, 2323.	3.2	7
514	PopFor: A new model for estimating poplar yields. Biomass and Bioenergy, 2020, 134, 105470.	5.7	7
515	Chapter 3. Impacts of Agriculture upon Greenhouse Gas Budgets. Issues in Environmental Science and Technology, 2012, , 57-82.	0.4	7
516	Assessment of projected changes in upland environments using simple climatic indices. Climate Research, 2010, 45, 87-104.	1.1	7
517	Observationâ€based global soil heterotrophic respiration indicates underestimated turnover and sequestration of soil carbon by terrestrial ecosystem models. Global Change Biology, 2022, 28, 5547-5559.	9.5	7
518	Avoid constructing wind farms on peat. Nature, 2012, 489, 33-33.	27.8	6
519	The potential uptake of domestic woodfuel heating systems and its contribution to tackling climate change: A case study from the North East Scotland. Renewable Energy, 2014, 72, 344-353.	8.9	6
520	Increasing beef production won't reduce emissions. Global Change Biology, 2016, 22, 3255-3256.	9.5	6
521	Estimating the effect of nitrogen fertilizer on the greenhouse gas balance of soils in Wales under current and future climate. Regional Environmental Change, 2016, 16, 2357-2368.	2.9	6
522	Balancing conservation and climate change – a methodology using existing data demonstrated for twelve UK priority habitats. Journal for Nature Conservation, 2016, 30, 76-89.	1.8	6

#	Article	IF	CITATIONS
523	Deforestation may increase soil carbon but it is unlikely to be continuous or unlimited. Global Change Biology, 2018, 24, 557-558.	9.5	6
524	Data for long-term marginal abatement cost curves of non-CO2 greenhouse gases. Data in Brief, 2019, 25, 104334.	1.0	6
525	The value of habitats of conservation importance to climate change mitigation in the UK. Biological Conservation, 2020, 248, 108619.	4.1	6
526	Using dynamic simulation models and the 'Dot-to-Dotâ€~̃ method to determine the optimum sampling times in field trials. Soil Use and Management, 2002, 18, 370-375.	4.9	6
527	Potential Coâ€benefits and tradeâ€offs between improved soil management, climate change mitigation and agriâ€food productivity. Food and Energy Security, 2022, 11, .	4.3	6
528	A simple equation for simulating C decomposition in a multi-component pool of soil organic matter. European Journal of Soil Science, 2005, 56, 050912034650040.	3.9	5
529	Limited Increase of Agricultural Soil Carbon and Nitrogen Stocks Due to Increased Atmospheric CO2Concentrations. Journal of Crop Improvement, 2005, 13, 393-399.	1.7	5
530	C <scp>ommentary</scp> : Do agricultural and forestry carbon offset schemes encourage sustainable climate solutions?. International Journal of Agricultural Sustainability, 2008, 6, 169-170.	3.5	5
531	Climate change: â€`no get out of jail free card'. Veterinary Record, 2020, 186, 71-71.	0.3	5
532	The Top 100 questions for the sustainable intensification of agriculture in India's rainfed drylands. International Journal of Agricultural Sustainability, 2021, 19, 106-127.	3.5	5
533	Animal waste use and implications to agricultural greenhouse gas emissions in the United States. Environmental Research Letters, 2021, 16, 064079.	5.2	5
534	Sustainability of Soil Management Practices - a Global Perspective. , 2007, , 241-254.		5
535	Carbon Sequestration and Greenhouse Gas Fluxes from Cropland Soils – Climate Opportunities and Threats. Environmental Science and Engineering, 2009, , 81-111.	0.2	5
536	Emissions of Nitrous Oxide from Agriculture: Responses to Management and Climate Change. ACS Symposium Series, 2011, , 343-370.	0.5	4
537	Spatial mapping of Great Britain's bioenergy to 2050. GCB Bioenergy, 2014, 6, 97-98.	5.6	4
538	Mathematical Modeling of Greenhouse Gas Emissions from Agriculture for Different End Users. Advances in Agricultural Systems Modeling, 0, , 197-227.	0.3	4
539	Complex controls on nitrous oxide flux across a large-elevation gradient in the tropical Peruvian Andes. Biogeosciences, 2017, 14, 5077-5097.	3.3	4
540	The impact of climate and societal change on food and nutrition security: A case study of Malawi. Food and Energy Security, 2021, 10, e290.	4.3	4

#	Article	IF	CITATIONS
541	A New Approach Using Modeling to Interpret Measured Changes in Soil Organic Carbon in Forests; The Case of a 200 Year Pine Chronosequence on a Podzolic Soil in Scotland. Frontiers in Environmental Science, 2020, 8, .	3.3	4
542	Does liming grasslands increase biomass productivity without causing detrimental impacts on net greenhouse gas emissions?. Environmental Pollution, 2022, 300, 118999.	7.5	4
543	Modelling soil carbon stocks following reduced tillage intensity: A framework to estimate decomposition rate constant modifiers for RothC-26.3, demonstrated in north-west Europe. Soil and Tillage Research, 2022, 222, 105428.	5.6	4
544	Carbon and water footprints of major crop production in India. Pedosphere, 2023, 33, 448-462.	4.0	4
545	Testing the adequacy of measured data for evaluating nitrogen turnover models by the dot-to-dot method. European Journal of Soil Science, 2003, 54, 175-186.	3.9	3
546	The role of soils in the Kyoto Protocol. , 2010, , 245-256.		3
547	Conference Report: Soil organic matter dynamics: beyond carbon: a report of the 4th International Symposium on Soil Organic Matter Dynamics. Carbon Management, 2013, 4, 485-489.	2.4	3
548	Using carbon sequestration to paint over the cracks, when we should be changing our consumption patterns. Carbon Management, 2014, 5, 27-29.	2.4	3
549	Competition for Land-Based Ecosystem Services: Trade-Offs and Synergies. , 2016, , 127-147.		3
550	Environmental Sustainability Aspects of Second Generation Ethanol Production from Sugarcane. , 2017, , 177-195.		3
551	Abundance changes of marsh plant species over 40Âyears are better explained by niche position water level than functional traits. Ecological Indicators, 2020, 117, 106639.	6.3	3
552	Learning in lockdown: Using the COVIDâ€19 crisis to teach children about food and climate change. Nutrition Bulletin, 2021, 46, 206-215.	1.8	3
553	Is domestic agricultural production sufficient to meet national food nutrient needs in Brazil?. PLoS ONE, 2021, 16, e0251778.	2.5	3
554	Introducing â€~Anthropocene Science': A New International Journal for Addressing Human Impact on the Resilience of Planet Earth. Anthropocene Science, 2022, 1, 1-4.	2.9	3
555	Climate change and drinking water from Scottish peatlands: Where increasing DOC is an issue?. Journal of Environmental Management, 2021, 300, 113688.	7.8	3
556	Use of Unoccupied Aerial Systems to Characterize Woody Vegetation across Silvopastoral Systems in Ecuador. Remote Sensing, 2022, 14, 3386.	4.0	3
557	Bioenergy technology—balancing energy output with environmental benefits. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, S174-S175.	1.8	2
558	Spatial predictions of greenhouse gas emissions associated with production of Miscanthus and short rotation coppice in the UK. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, S181-S182.	1.8	2

#	Article	IF	CITATIONS
559	LawSync: Navigating the â€~Blue Oceans' Within the â€~Emerging' Legal Services Markets. Legal Informati Management, 2012, 12, 203-209.	ion 0.1	2
560	An explicit and computationally efficient method to initialise first-order-based soil organic matter models—The Geometric Series Solution (GSS). Ecological Modelling, 2013, 267, 48-53.	2.5	2
561	Significant Contribution of Energy Crops to Heat and Electricity Needs in Great Britain to 2050. Bioenergy Research, 2014, 7, 919-926.	3.9	2
562	Assessing land requirements associated with UK food consumption: implications for food security and environmental sustainability. Proceedings of the Nutrition Society, 2015, 74, .	1.0	2
563	Environmental impacts of current and future diets in India. Lancet Planetary Health, The, 2018, 2, S28.	11.4	2
564	Response to "The "4p1000―initiative: A new name should be adopted―by Baveye and White (2019). An 2020, 49, 363-364.	ıbio,	2
565	Global change and the challenges for agriculture and forestry. Journal of Agricultural Science, 2000, 135, 199-201.	1.3	1
566	AGRICULTURAL CARBON MITIGATION OPTIONS IN EUROPE: IMPROVED ESTIMATES AND THE GLOBAL PERSPECTIVE. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2000, 48, 209-216.	0.2	1
567	Regional environmental change: special issue on "Modelling future changes in Cropland Soil Carbon in European Russia and the Ukraine― Regional Environmental Change, 2007, 7, 49-49.	2.9	1
568	The role of the land biosphere in climate change mitigation. , 0, , 202-244.		1
569	Two Spatial Non-Nested Tests for Weight Structure in the Spatial Autoregressive Model. Geographical Analysis, 2013, 45, 345-358.	3.5	1
570	Exploring a â€~Healthy Foodshed': Land Use Associated with the UK Fruit and Vegetables Supply. , 2016, , 247-261.		1
571	Projecting the effect of crop yield increases, dietary change and different price scenarios on land use under two different state security regimes. International Journal of Agricultural Sustainability, 2021, 19, 288-304.	3.5	1
572	Agricultural GHG emission and calorie intake nexus among different socioeconomic households of rural eastern India. Environment, Development and Sustainability, 2021, 23, 11563-11582.	5.0	1
573	Accounting for changes in soil carbon under the Kyoto Protocol: need for improved long-term data sets to reduce uncertainty in model projections. Soil Use and Management, 2003, 19, 265-269.	4.9	1
574	Comparing Estimates of Regional Carbon Sequestration Potential Using Geographical Information Systems, Dynamic Soil Organic Matter Models, and Simple Relationships. , 2002, , .		1
575	The soil carbon dioxide sink , 0, , 50-57.		1
576	Impacts of crop type, management and soil quality indicators on background nitrous oxide emissions (BNE) from Chinese croplands: a quantitative review and analysis. Environmental Science Atmospheres, 2022, 2, 563-573.	2.4	1

#	Article	IF	CITATIONS
577	Agricultural Practices and Policies for Carbon Sequestration in Soil. Journal of Environmental Quality, 2003, 32, 1573.	2.0	0
578	CLIMATE MODELS, ROLE OF SOIL. , 2005, , 262-268.		0
579	Using dynamic simulation models and the †Dotâ€toâ€Dot' method to determine the optimum sampling tin in field trials. Soil Use and Management, 2002, 18, 370-375.	1es 4.9	0
580	Sequestering Carbon Dioxide by the Use of the Energy Crop Miscanthus: Quantifying the Energy Production and Sequestration Potential of Europe. , 2007, , .		0
581	For peat's sake. New Scientist, 2008, 198, 22.	0.0	0
582	Outcomes from "Our Common Future under Climate Change", Paris 6-10 July 2015. Environmental Development, 2015, 16, 138.	4.1	0
583	Response to Letter to the Editor "Comments on "Modelling soil organic carbon storage with RothC in irrigated Vertisols under cotton cropping systems in the sub-tropics―(Nimai Senapati, Nilantha R.) Tj ETQq1 1 0.	784314 rş 5.6	gBT /Overloo
584	Decarbonizing Anthropogenic Activity: The Oil and Gas Industry is a Major Component of the Solution. , 2019, , .		0
585	Climate Change as a Driving Force on Urban Energy Consumption Patterns. , 2018, , 7815-7830.		0
586	Climate Change as a Driving Force on Urban Energy Consumption Patterns. Advances in Public Policy and Administration, 2019, , 547-563.	0.1	0
587	Agricultural systems. , 2022, , 375-402.		0