James N Sleigh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4207025/publications.pdf Version: 2024-02-01

IAMES N SLEICH

#	Article	IF	CITATIONS
1	Axonal transport and neurological disease. Nature Reviews Neurology, 2019, 15, 691-703.	10.1	201
2	Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10962-10967.	7.1	159
3	The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. DMM Disease Models and Mechanisms, 2011, 4, 457-467.	2.4	113
4	A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. BMC Research Notes, 2016, 9, 82.	1.4	106
5	Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects. PLoS Genetics, 2010, 6, e1001172.	3.5	93
6	Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. Journal of Cell Biology, 2019, 218, 1871-1890.	5.2	80
7	Vascular <scp>D</scp> efects and <scp>S</scp> pinal <scp>C</scp> ord <scp>H</scp> ypoxia in <scp> S</scp> pinal <scp>M</scp> uscular <scp>A</scp> trophy. Annals of Neurology, 2016, 79, 217-230.	5.3	79
8	Neuromuscular junction maturation defects precede impaired lower motor neuron connectivity in Charcot-Marie-Tooth type 2D mice. Human Molecular Genetics, 2014, 23, 2639-2650.	2.9	75
9	Synaptic Deficits at Neuromuscular Junctions in Two Mouse Models of Charcot–Marie–Tooth Type 2d. Journal of Neuroscience, 2016, 36, 3254-3267.	3.6	66
10	Morphological analysis of neuromuscular junction development and degeneration in rodent lumbrical muscles. Journal of Neuroscience Methods, 2014, 227, 159-165.	2.5	64
11	Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Human Molecular Genetics, 2014, 23, 855-869.	2.9	62
12	Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by <i>Gars</i> mutations. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3324-E3333.	7.1	61
13	Antisense oligonucleotides and other genetic therapies made simple. Practical Neurology, 2018, 18, 126-131.	1.1	51
14	Mice Carrying ALS Mutant TDP-43, but Not Mutant FUS, Display InÂVivo Defects in Axonal Transport of Signaling Endosomes. Cell Reports, 2020, 30, 3655-3662.e2.	6.4	51
15	A novel Caenorhabditis elegans allele, smn-1(cb131), mimicking a mild form of spinal muscular atrophy, provides a convenient drug screening platform highlighting new and pre-approved compounds. Human Molecular Genetics, 2011, 20, 245-260.	2.9	50
16	Dominant, toxic gain-of-function mutations in <i>gars</i> lead to non-cell autonomous neuropathology. Human Molecular Genetics, 2015, 24, 4397-4406.	2.9	50
17	In vivo imaging of axonal transport in murine motor and sensory neurons. Journal of Neuroscience Methods, 2016, 257, 26-33.	2.5	47
18	Loss of the E3 ubiquitin ligase LRSAM1 sensitizes peripheral axons to degeneration in a mouse model of Charcot-Marie-Tooth disease. DMM Disease Models and Mechanisms, 2013, 6, 780-92.	2.4	44

JAMES N SLEIGH

#	Article	IF	CITATIONS
19	Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice. Neurobiology of Aging, 2014, 35, 906-915.	3.1	39
20	Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Frontiers in Molecular Neuroscience, 2017, 10, 405.	2.9	39
21	Methodological advances in imaging intravital axonal transport. F1000Research, 2017, 6, 200.	1.6	33
22	UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain, 2018, 141, 2878-2894.	7.6	29
23	Loss of BICD2 in muscle drives motor neuron loss in a developmental form of spinal muscular atrophy. Acta Neuropathologica Communications, 2020, 8, 34.	5.2	26
24	Neuropilin 1 sequestration by neuropathogenic mutant glycyl-tRNA synthetase is permissive to vascular homeostasis. Scientific Reports, 2017, 7, 9216.	3.3	25
25	Morphological variability is greater at developing than mature mouse neuromuscular junctions. Journal of Anatomy, 2020, 237, 603-617.	1.5	25
26	Invertebrate models of spinal muscular atrophy: Insights into mechanisms and potential therapeutics. BioEssays, 2011, 33, 956-965.	2.5	24
27	In Vivo Imaging of Anterograde and Retrograde Axonal Transport in Rodent Peripheral Nerves. Methods in Molecular Biology, 2020, 2143, 271-292.	0.9	23
28	Plexin-Semaphorin Signaling Modifies Neuromuscular Defects in a Drosophila Model of Peripheral Neuropathy. Frontiers in Molecular Neuroscience, 2018, 11, 55.	2.9	21
29	Neuronal over-expression of Oxr1 is protective against ALS-associated mutant TDP-43 mislocalisation in motor neurons and neuromuscular defects in vivo. Human Molecular Genetics, 2019, 28, 3584-3599.	2.9	19
30	Aligned electrospun fibers for neural patterning. Biotechnology Letters, 2018, 40, 601-607.	2.2	18
31	The evolution of the axonal transport toolkit. Traffic, 2020, 21, 13-33.	2.7	18
32	Intramuscular Delivery of Gene Therapy for Targeting the Nervous System. Frontiers in Molecular Neuroscience, 2020, 13, 129.	2.9	18
33	C. elegans models of neuromuscular diseases expedite translational research. Translational Neuroscience, 2010, 1, .	1.4	17
34	Developmental demands contribute to early neuromuscular degeneration in CMT2D mice. Cell Death and Disease, 2020, 11, 564.	6.3	17
35	A longitudinal and crossâ€sectional study of plasma neurofilament light chain concentration in <scp>Charcotâ€Marieâ€Tooth</scp> disease. Journal of the Peripheral Nervous System, 2022, 27, 50-57.	3.1	16
36	Engineered method for directional growth of muscle sheets on electrospun fibers. Journal of Biomedical Materials Research - Part A, 2018, 106, 1165-1176.	4.0	15

JAMES N SLEIGH

#	Article	IF	CITATIONS
37	Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes in vivo . Matters, 0, , .	1.0	13
38	Coupling axonal mRNA transport and local translation to organelle maintenance and function. Current Opinion in Cell Biology, 2022, 74, 97-103.	5.4	13
39	Functional analysis of nematode nicotinic receptors. Bioscience Horizons, 2010, 3, 29-39.	0.6	12
40	A video protocol for rapid dissection of mouse dorsal root ganglia from defined spinal levels. BMC Research Notes, 2020, 13, 302.	1.4	12
41	NMJ-Analyser identifies subtle early changes in mouse models of neuromuscular disease. Scientific Reports, 2021, 11, 12251.	3.3	12
42	Altered Sensory Neuron Development in CMT2D Mice Is Site-Specific and Linked to Increased GlyRS Levels. Frontiers in Cellular Neuroscience, 2020, 14, 232.	3.7	9
43	Expanding the Toolkit for In Vivo Imaging of Axonal Transport. Journal of Visualized Experiments, 2021, , .	0.3	8
44	Dissection, in vivo imaging and analysis of the mouse epitrochleoanconeus muscle. Journal of Anatomy, 2021, , .	1.5	7
45	ALS Mice Carrying Pathological Mutant TDP-43, But Not Mutant FUS, Display Axonal Transport Defects <i>in vivo</i> . SSRN Electronic Journal, 0, , .	0.4	1
46	Axonal Transport: The Delivery System Keeping Nerve Cells Alive. Frontiers for Young Minds, 0, 8, .	0.8	1
47	Editorial: Pathways and Processes Underpinning Axonal Biology and Pathobiology. Frontiers in Molecular Neuroscience, 2022, 15, 883244	2.9	Ο