
Eiji Morita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4206404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Protein Network of HIV Budding. Cell, 2003, 114, 701-713.	28.9	771
2	Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO Journal, 2007, 26, 4215-4227.	7.8	613
3	RETROVIRUS BUDDING. Annual Review of Cell and Developmental Biology, 2004, 20, 395-425.	9.4	561
4	Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. Journal of Cell Biology, 2010, 190, 511-521.	5.2	402
5	Influenza Virus Hemagglutinin and Neuraminidase, but Not the Matrix Protein, Are Required for Assembly and Budding of Plasmid-Derived Virus-Like Particles. Journal of Virology, 2007, 81, 7111-7123.	3.4	267
6	Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. Journal of Cell Biology, 2013, 203, 115-128.	5.2	242
7	ESCRT-III Protein Requirements for HIV-1 Budding. Cell Host and Microbe, 2011, 9, 235-242.	11.0	203
8	Human ESCRT-III and VPS4 proteins are required for centrosome and spindle maintenance. Proceedings of the United States of America, 2010, 107, 12889-12894.	7.1	183
9	Two Distinct Modes of ESCRT-III Recognition Are Required for VPS4 Functions in Lysosomal Protein Targeting and HIV-1 Budding. Developmental Cell, 2008, 15, 62-73.	7.0	151
10	NEDD4L Overexpression Rescues the Release and Infectivity of Human Immunodeficiency Virus Type 1 Constructs Lacking PTAP and YPXL Late Domains. Journal of Virology, 2008, 82, 4884-4897.	3.4	144
11	Evidence for a New Viral Late-Domain Core Sequence, FPIV, Necessary for Budding of a Paramyxovirus. Journal of Virology, 2005, 79, 2988-2997.	3.4	141
12	Parvovirus B19 and the pathogenesis of anaemia. Reviews in Medical Virology, 2003, 13, 347-359.	8.3	119
13	Biochemical Analyses of Human IST1 and Its Function in Cytokinesis. Molecular Biology of the Cell, 2009, 20, 1360-1373.	2.1	119
14	Expression of MicroRNA miR-122 Facilitates an Efficient Replication in Nonhepatic Cells upon Infection with Hepatitis C Virus. Journal of Virology, 2012, 86, 7918-7933.	3.4	107
15	Human Parvovirus B19 Induces Cell Cycle Arrest at G 2 Phase with Accumulation of Mitotic Cyclins. Journal of Virology, 2001, 75, 7555-7563.	3.4	105
16	Identification of Human MVB12 Proteins as ESCRT-I Subunits that Function in HIV Budding. Cell Host and Microbe, 2007, 2, 41-53.	11.0	100
17	Structural Basis of the Autophagy-Related LC3/Atg13 LIR Complex: Recognition and Interaction Mechanism. Structure, 2014, 22, 47-58.	3.3	93
18	Japanese Encephalitis Virus Core Protein Inhibits Stress Granule Formation through an Interaction with Caprin-1 and Facilitates Viral Propagation. Journal of Virology, 2013, 87, 489-502.	3.4	91

Eiji Morita

#	Article	IF	CITATIONS
19	Human Parvovirus B19 Nonstructural Protein (NS1) Induces Cell Cycle Arrest at G ₁ Phase. Journal of Virology, 2003, 77, 2915-2921.	3.4	87
20	Unique Requirement for ESCRT Factors in Flavivirus Particle Formation on the Endoplasmic Reticulum. Cell Reports, 2016, 16, 2339-2347.	6.4	80
21	Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation. Biochemical and Biophysical Research Communications, 2003, 309, 848-856.	2.1	70
22	Heterogeneous Nuclear Ribonucleoprotein A2 Participates in the Replication of Japanese Encephalitis Virus through an Interaction with Viral Proteins and RNA. Journal of Virology, 2011, 85, 10976-10988.	3.4	65
23	Vacuolar Protein Sorting Pathway Contributes to the Release of Marburg Virus. Journal of Virology, 2009, 83, 2327-2337.	3.4	39
24	Differential requirements of mammalian ESCRTs in multivesicular body formation, virus budding and cell division. FEBS Journal, 2012, 279, 1399-1406.	4.7	38
25	Human Parvovirus B19 nonstructural protein transactivates the p21/WAF1 through Sp1. Virology, 2004, 329, 493-504.	2.4	34
26	Understanding the Biological Context of NS5A–Host Interactions in HCV Infection: A Network-Based Approach. Journal of Proteome Research, 2013, 12, 2537-2551.	3.7	33
27	Functional Correlation between Subcellular Localizations of Japanese Encephalitis Virus Capsid Protein and Virus Production. Journal of Virology, 2019, 93, .	3.4	29
28	Attenuated protein expression vectors for use in siRNA rescue experiments. BioTechniques, 2012, 0, 1-5.	1.8	29
29	Flavivirus Replication Organelle Biogenesis in the Endoplasmic Reticulum: Comparison with Other Single-Stranded Positive-Sense RNA Viruses. International Journal of Molecular Sciences, 2019, 20, 2336.	4.1	28
30	The PtdIns3â€phosphatase MTMR3 interacts with mTORC1 and suppresses its activity. FEBS Letters, 2016, 590, 161-173.	2.8	26
31	Human parvovirus B19-induced cell cycle arrest and apoptosis. Seminars in Immunopathology, 2002, 24, 187-199.	4.0	22
32	A transgenic mouse model for non-immune hydrops fetalis induced by the NS1 gene of human parvovirus B19. Journal of General Virology, 2002, 83, 273-281.	2.9	19
33	Endoplasmic Reticulum-Associated Degradation Controls Virus Protein Homeostasis, Which Is Required for Flavivirus Propagation. Journal of Virology, 2021, 95, e0223420.	3.4	18
34	Proteomic Analysis of Hepatitis C Virus (HCV) Core Protein Transfection and Host Regulator PA28γ Knockout in HCV Pathogenesis: A Network-Based Study. Journal of Proteome Research, 2012, 11, 3664-3679.	3.7	13
35	Membrane-Associated Flavivirus Replication Complex—Its Organization and Regulation. Viruses, 2021, 13, 1060.	3.3	12
36	Cellular ESCRT components are recruited to regulate the endocytic trafficking and RNA replication compartment assembly during classical swine fever virus infection. PLoS Pathogens, 2022, 18, e1010294.	4.7	12

Eiji Morita

#	Article	IF	CITATIONS
37	Case Report and Study of Collagen Metabolism in Ehlersâ€Danlos Syndrome Type II. Journal of Dermatology, 1988, 15, 155-160.	1.2	9
38	Flavivirus recruits the valosin-containing protein–NPL4 complex to induce stress granule disassembly for efficient viral genome replication. Journal of Biological Chemistry, 2022, 298, 101597.	3.4	7
39	Membrane recruitment of autophagy proteins in selective autophagy. Hepatology Research, 2012, 42, 435-441.	3.4	5
40	Efficient immunogenic peptide antigen delivery to dendritic cells using an ESCRT-mediated extracellular vesicle formation method. Vaccine, 2021, 39, 2976-2982.	3.8	4
41	Primary structures of hemagglutinin-esterase and spike glycoproteins of murine coronavirus DVIM. Virus Genes, 1998, 17, 123-128.	1.6	3
42	Establishment of multifunctional monoclonal antibody to the nonstructural protein, NS1, of human parvovirus B19. Journal of Infection, 2003, 47, 236-242.	3.3	3
43	Immuno-localization of ESCRT Proteins in Virus-Infected Cells by Fluorescence and Electron Microscopy. Methods in Molecular Biology, 2019, 1998, 73-92.	0.9	3
44	Network-Based Analysis of Host-Pathogen Interactions. , 2019, , 932-937.		2
45	Fusion of parvovirus B19 receptor-binding domain and pneumococcal surface protein A induces protective immunity against parvovirus B19 and Streptococcus pneumoniae. Vaccine, 2021, 39, 5146-5152.	3.8	2
46	Expression of Zinc-Finger Antiviral Protein in hCMEC/D3 Human Cerebral Microvascular Endothelial Cells: Effect of a Toll-Like Receptor 3 Agonist. NeuroImmunoModulation, 2022, 29, 349-358.	1.8	2
47	Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO Journal, 2012, 31, 3228-3228.	7.8	1
48	Nanoparticle Deposition of Fluoropolymer CYTOP via Holographic Femtosecond Laser Processing and Its Biochip Application. Applied Sciences (Switzerland), 2020, 10, 7243.	2.5	1
49	Split Nano Luciferase-based Assay to Measure Assembly of Japanese Encephalitis Virus. Bio-protocol, 2020, 10, e3606.	0.4	1
50	Zika virus infection and replication organelle biogenesis. , 2021, , 49-57.		0
51	Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. Journal of Experimental Medicine, 2010, 207, i24-i24.	8.5	0
52	Membrane closure in stress induced-autophagosome formation. Cell Stress, 2018, 2, 122-124.	3.2	0