Makoto Ogawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4206208/publications.pdf

Version: 2024-02-01

319 papers 11,991 citations

53 h-index 49824 91 g-index

332 all docs 332 does citations

times ranked

332

7918 citing authors

#	Article	IF	CITATIONS
1	MXene-copper oxide/sulfonated polyether ether ketone as a hybrid composite proton exchange membrane in electrochemical water electrolysis. Catalysis Today, 2023, 407, 96-106.	2.2	11
2	Post-synthetic particle size reduction of a layered cesium titanate (Cs2Ti5O11) for the improvement of photocatalytic H2 production. Journal of Physics and Chemistry of Solids, 2022, 163, 110541.	1.9	3
3	Simple Fabrication of a Continuous-Flow Photocatalytic Reactor Using Dopamine-Assisted Immobilization onto a Fluoropolymer Tubing. Industrial & Engineering Chemistry Research, 2022, 61, 1322-1331.	1.8	5
4	Remarkable stability of dye in polymer-clay nanocomposite film. Applied Clay Science, 2022, 218, 106405.	2.6	8
5	Mechanochromic luminescence of a bionanocomposite hydrogel. Chemical Communications, 2022, 58, 3278-3281.	2.2	6
6	Organophilic Clay with Useful Whiteness. Langmuir, 2022, 38, 2979-2985.	1.6	4
7	Interactions of layered clay minerals with water-soluble polymers; structural design and functions. Applied Clay Science, 2022, 222, 106487.	2.6	11
8	A six-fold difference in structure results in a six-order difference in conductivity: silica shell nanoarchitectonics on carbon black particles. Nanoscale, 2022, 14, 7480-7483.	2.8	3
9	Lepidocrocite-Type Layered Titanate Nanoparticles as Photocatalysts for H ₂ Production. ACS Applied Nano Materials, 2022, 5, 9053-9062.	2.4	11
10	Simple and cost-effective mass production of nitrate type MgAl layered double hydroxide: Titration from concentrated solution. Applied Clay Science, 2022, 228, 106615.	2.6	8
11	Acceleration of the photocatalytic degradation of organics by in-situ removal of the products of degradation. Applied Catalysis B: Environmental, 2021, 284, 119705.	10.8	40
12	Self-healing polymer–clay hybrids by facile complexation of a waterborne polymer with a clay. Materials Advances, 2021, 2, 3770-3776.	2.6	4
13	Formation of BiOX (X = Cl and Br) in a mesoporous silica by the infiltration of Bi salts and the subsequent reaction with HX vapor. Chemical Communications, 2021 , 57 , $8139-8142$.	2.2	2
14	Directional growth of octacalcium phosphate using micro-flow reactor mixing and subsequent aging. RSC Advances, 2021, 11, 15969-15976.	1.7	3
15	Adsorption of Triclosan onto Organically Modified-Magadiite and Bentonite. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1902-1911.	1.9	10
16	Heterostructural transformation of mesoporous silica–titania hybrids. Scientific Reports, 2021, 11, 3210.	1.6	14
17	Nanoarchitectonics through Organic Modification of Oxide Based Layered Materials; Concepts, Methods and Functions. Bulletin of the Chemical Society of Japan, 2021, 94, 678-693.	2.0	44
18	Suppressing the Photocatalytic Activity of Titania by Precisely Controlled Silica Coating. Inorganic Chemistry, 2021, 60, 6201-6208.	1.9	8

#	Article	IF	Citations
19	Efficient Negative Photochromism by the Photoinduced Migration of Photochromic Merocyanine/Spiropyran in the Solid State. Langmuir, 2021, 37, 3702-3708.	1.6	14
20	Preparation of MgGa Layered Double Hydroxides and Possible Compositional Variation. Nanomaterials, 2021, 11, 1206.	1.9	4
21	Highly Luminescent Inorganic–Organic Hybrids with Molecularly Dispersed Perylene. Inorganic Chemistry, 2021, 60, 9563-9570.	1.9	8
22	Simple and efficient method for functionalizing photocatalytic ceramic membranes and assessment of its applicability for wastewater treatment in up-scalable membrane reactors. Separation and Purification Technology, 2021, 262, 118307.	3.9	18
23	Well-Defined Hexagonal Platy Particles of Brucite, Brucite/Silica Core Shell, and Hollow Silica Particle. Bulletin of the Chemical Society of Japan, 2021, 94, 2396-2401.	2.0	0
24	Important Roles of Water Clusters Confined in a Nanospace as Revealed by a Synchrotron X-ray Diffraction Study. Langmuir, 2021, 37, 10469-10480.	1.6	6
25	Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues. Frontiers in Energy, 2021, 15, 631-655.	1.2	9
26	Efficient Concentration of PB From Water by Reactions With Layered Alkali Silicates, Magadiite and Octosilicate. Clays and Clay Minerals, 2021, 69, 416-424.	0.6	3
27	Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 2021, 417, 126068.	6.5	31
28	MXene potassium titanate nanowire/sulfonated polyether ether ketone (SPEEK) hybrid composite proton exchange membrane for photocatalytic water splitting. RSC Advances, 2021, 11, 9327-9335.	1.7	7
29	Mechanochemical syntheses of all-inorganic iodide perovskites from layered cesium titanate and bismuth (and antimony) iodide. Chemical Communications, 2021, 57, 10003-10006.	2.2	2
30	Composition-Dependent Thermal Stability and Water-Induced Self-Healing Behavior of Smectite/Waterborne Polymer Hybrid Film. Langmuir, 2021, 37, 12887-12896.	1.6	3
31	Synergistic Effects of Polybenzimidazole and Aramide on Enhancing Flameâ€Retardancy and Solubility. Macromolecular Materials and Engineering, 2021, 306, 2100459.	1.7	2
32	Fabrication and photocatalytic behavior of titanium oxide–gold nanoparticles composite ultrathin films prepared using surface sol–gel process. Journal of Sol-Gel Science and Technology, 2020, 93, 563-569.	1.1	5
33	Characteristics of flexible supramolecular assembly of dioleyldimethylammonium ion confined in a two dimensional nanospace studied by the host-guest reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 605, 125352.	2.3	5
34	Template Synthesis of Well-Defined Rutile Nanoparticles by Solid-State Reaction at Room Temperature. Inorganic Chemistry, 2020, 59, 7934-7938.	1.9	8
35	Photofunctions of Dye-Clay Hybrids: Recent Developments. Structure and Bonding, 2020, , 251-320.	1.0	7
36	Crystallization of well-defined anatase nanoparticles in SBA-15 for the photocatalytic decomposition of acetic acid. RSC Advances, 2020, 10, 32350-32356.	1.7	4

#	Article	IF	Citations
37	Preparation of a Chitin/Clay Hybrid Film by a Mechanochemical Method. ACS Applied Polymer Materials, 2020, 2, 4733-4738.	2.0	4
38	Designing nanoarchitecture for environmental remediation based on the clay minerals as building block. Journal of Hazardous Materials, 2020, 399, 122888.	6.5	42
39	An experimental and steered molecular dynamics simulation approach to histidine assisted liquid-phase exfoliation of graphite into few-layer graphene. Physical Chemistry Chemical Physics, 2020, 22, 9910-9914.	1.3	4
40	Simultaneous Controlled Seeded-Growth and Doping of ZnO Nanorods with Aluminum and Cerium: Feasibility Assessment and Effect on Photocatalytic Activity. Crystal Growth and Design, 2020, 20, 5508-5525.	1.4	18
41	Organically Modified Bentonite as an Efficient and Reusable Adsorbent for Triclosan Removal from Water. Langmuir, 2020, 36, 9025-9034.	1.6	22
	lon Exchange of Layered Alkali Titanates (Na ₂ Ti ₃ O ₇ ,) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 552
42	with Alkali Halides by the Solid-State Reactions at Room Temperature. Inorganic Chemistry, 2020, 59, 4024-4029.	1.9	19
43	Simultaneous Delamination and Rutile Formation on the Surface of Ti ₃ C ₂ T _{<i>x</i>} MXene for Copper Adsorption. Chemistry - an Asian Journal, 2020, 15, 1044-1051.	1.7	59
44	Preparation of Layered Double Hydroxides toward Precisely Designed Hierarchical Organization. ChemEngineering, 2019, 3, 68.	1.0	41
45	Improved Rheological Properties of Organophilic-Clay Suspensions by a Simple Pretreatment with a Wet Type Jet Mill. Bulletin of the Chemical Society of Japan, 2019, 92, 1329-1334.	2.0	7
46	Polymorphism of Mixed Metal Cr/Fe Terephthalate Metal–Organic Frameworks Utilizing a Microwave Synthetic Method. Crystal Growth and Design, 2019, 19, 5581-5591.	1.4	23
47	Preferential immobilization of size-controlled anatase nanoparticles in mesopores. Chemical Communications, 2019, 55, 8442-8445.	2.2	10
48	Electron Microscopy Study of TiO2 Nanoparticle in Mesoporous Silica. Microscopy and Microanalysis, 2019, 25, 2214-2215.	0.2	1
49	Novel Flexible Supramolecular Assembly of Dioleyldimethylammonium Ion in a Two-Dimensional Nanospace Studied by Neutron Scattering. Langmuir, 2019, 35, 13977-13982.	1.6	14
50	Pore shape-reflecting morphosynthesis of lithium niobium oxide <i>via</i> mixed chloride flux growth in the presence of mesoporous silica. Nanoscale Advances, 2019, 1, 1726-1730.	2.2	1
51	The Improved Stability of Molecular Guests by the Confinement into Nanospaces. Chemistry Letters, 2019, 48, 398-409.	0.7	26
52	Synergy effects of the complexation of a titania and a smectite on the film formation and its photocatalyst' performance. Applied Clay Science, 2019, 169, 129-134.	2.6	17
53	Photoactive nanoarchitectures based on clays incorporating TiO ₂ and ZnO nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1140-1156.	1.5	50
54	Complexation of TiO2 With Clays and Clay Minerals for Hierarchically Designed Functional Hybrids. , 2019, , 125-150.		5

#	Article	IF	Citations
55	Acceleration of photochromism and negative photochromism by the interactions with mesoporous silicas. Photochemical and Photobiological Sciences, 2019, 18, 1742-1749.	1.6	11
56	Preparation of sodium-type bentonite with useful swelling property by a mechanochemical reaction from a weathered bentonite. Applied Clay Science, 2019, 175, 124-129.	2.6	9
57	Photochromic Reactions in Nanospace: Host–Guest Interactions and Opportunity. , 2019, , 163-177.		1
58	Hydrophilic Internal Pore and Hydrophobic Particle Surface of Organically Modified Mesoporous Silica Particle to Host Photochromic Molecules. Chemistry Letters, 2019, 48, 170-172.	0.7	9
59	Efficient production of MgAl layered double hydroxide nanoparticle. Journal of the Ceramic Society of Japan, 2019, 127, 11-17.	0.5	14
60	Layered Titanates (Na2Ti3O7 and Cs2Ti5O11) as Very High Capacity Adsorbents of Cadmium(II). Bulletin of the Chemical Society of Japan, 2019, 92, 1-6.	2.0	11
61	Immobilization of titanium dioxide in mesoporous silicas: Structural design and characterization. Journal of Solid State Chemistry, 2019, 270, 162-172.	1.4	22
62	Photochromism of a Spiropyran in the Presence of a Synthetic Hectorite. Chemistry Letters, 2018, 47, 189-191.	0.7	11
63	Mechanochemical methods for the preparation of intercalation compounds, from intercalation to the formation of layered double hydroxides. Dalton Transactions, 2018, 47, 2896-2916.	1.6	60
64	Inorganic modification of layered silicates toward functional inorganic-inorganic hybrids. Applied Clay Science, 2018, 153, 187-197.	2.6	39
65	Precise Synthesis of Wellâ€Defined Inorganicâ€Organic Hybrid Particles. Chemical Record, 2018, 18, 950-968.	2.9	14
66	Distribution Control-Oriented Intercalation of a Cationic Metal Complex into Layered Silicates Modified with Organosulfonic-Acid Moieties. Langmuir, 2018, 34, 4762-4773.	1.6	7
67	Negative Photochromism Based on Molecular Diffusion between Hydrophilic and Hydrophobic Particles in the Solid State. Inorganic Chemistry, 2018, 57, 3671-3674.	1.9	39
68	Facile syntheses of nanoporous organosilica spherical particles. Journal of Porous Materials, 2018, 25, 425-431.	1.3	4
69	Control of the optical properties of cadmium selenide nanoparticles using magadiite. Dalton Transactions, 2018, 47, 807-813.	1.6	5
70	Control of Polymorphism of Metal–Organic Frameworks Using Mixed-Metal Approach. Crystal Growth and Design, 2018, 18, 16-21.	1.4	33
71	Removal of Water-Soluble Polymers from an Aqueous Solution by Adsorption onto an Acidic Clay. Clays and Clay Minerals, 2018, 66, 96-103.	0.6	3
72	Layered Silicates as a Possible Drug Carrier. The Enzymes, 2018, 44, 117-136.	0.7	11

#	Article	IF	Citations
73	Unsaturated Mn(II)-Centered [Mn(BDC)] _{<i>n</i>} Metal–Organic Framework with Strong Water Binding Ability and Its Potential for Dehydration of an Ethanol/Water Mixture. Inorganic Chemistry, 2018, 57, 13075-13078.	1.9	6
74	Adsorption-Induced Dye Stability of Cationic Dyes on Clay Nanosheets. Langmuir, 2018, 34, 14069-14075.	1.6	24
75	Highly Efficient Indium(III) Collection from Water by a Reaction with a Layered Titanate (Na ₂ Ti ₃ O ₇). European Journal of Inorganic Chemistry, 2018, 2018, 3835-3839.	1.0	8
76	The possible doping of Al3+ and F \hat{a} modification onto CdS in montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 133-139.	2.3	14
77	Photoinduced structural changes of cationic azo dyes confined in a two dimensional nanospace by two different mechanisms. RSC Advances, 2017, 7, 8077-8081.	1.7	18
78	Inorganic–Organic Interactions. Nanostructure Science and Technology, 2017, , 163-186.	0.1	7
79	Adsorbents Derived from Layered Solids. Nanostructure Science and Technology, 2017, , 263-301.	0.1	1
80	Mechanochemical synthesis of finite particle of layered double hydroxide-acetate intercalation compound: Swelling, thin film and ion exchange. Journal of Solid State Chemistry, 2017, 253, 147-153.	1.4	15
81	Synthesis and Optical Properties of MnS–ZnS and MnS–CdS Nanoparticles in Montmorillonite. Journal of Nanoscience and Nanotechnology, 2017, 17, 1420-1427.	0.9	6
82	Bio-geo hybrid pigment; clay-anthocyanin complex which changes color depending on the atmosphere. Dyes and Pigments, 2017, 139, 561-565.	2.0	35
83	Deposition of a titania layer on spherical porous silica particles and their nanostructure-induced vapor sensing properties. Nanoscale, 2017, 9, 16791-16799.	2.8	10
84	Photochromism of a Spiropyran in the Presence of a Dendritic Fibrous Nanosilica; Simultaneous Photochemical Reaction and Adsorption. Journal of Physical Chemistry A, 2017, 121, 8080-8085.	1.1	16
85	Efficient Concentration of Indium(III) from Aqueous Solution Using Layered Silicates. Langmuir, 2017, 33, 9558-9564.	1.6	22
86	Mechanochemical Encapsulation of an Aromatic Hydrocarbon into Mesoporous Silica as a Simple Slow Release Formulation. ChemistrySelect, 2017, 2, 6758-6761.	0.7	2
87	Structure and Dynamics of Nonionic Surfactant Aggregates in Layered Materials. Langmuir, 2017, 33, 9759-9771.	1.6	25
88	Size-Controlled Synthesis of Anatase in a Mesoporous Silica, SBA-15. Langmuir, 2017, 33, 13598-13603.	1.6	19
89	Mesoporous Silica Layer: Preparation and Opportunity. Chemical Record, 2017, 17, 217-232.	2.9	30
90	Hydrothermal synthesis of zinc selenide in smectites. Applied Clay Science, 2017, 135, 45-51.	2.6	12

#	Article	IF	Citations
91	PREPUBLICATION: Removal of water-soluble polymers from an aqueous solution by adsorption onto an acidic clay. Clays and Clay Minerals, 2017, , .	0.6	0
92	Meet Our Associate Editor:. Recent Patents on Nanotechnology, 2016, 10, 1-1.	0.7	0
93	Efficient Photodegradation of Organics in Acidic Solution by ZnO–Smectite Hybrids. European Journal of Inorganic Chemistry, 2016, 2016, 3157-3162.	1.0	13
94	Green Synthesis of Organophilic Clays; Solid-State Reaction of Acidic Clay with Organoamine. Industrial & Clays; Engineering Chemistry Research, 2016, 55, 6325-6330.	1.8	14
95	Unprecedentedly enhanced solar photocatalytic activity of a layered titanate simply integrated with TiO ₂ nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 30920-30925.	1.3	32
96	The effect of alcohol type on the thickness of silica layer of Co3O4@SiO2 core-shell particle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 39-46.	2.3	15
97	Modified Method for Bentonite Purification and Characterization; a Case Study Using Bentonite from Tsunagi Mine, Niigata, Japan. Clays and Clay Minerals, 2016, 64, 275-282.	0.6	14
98	Mesoporous silica coated silica–titania spherical particles: from impregnation to core–shell formation. Dalton Transactions, 2016, 45, 18742-18749.	1.6	8
99	Efficient photocatalytic oxidation of benzene to phenol by metal complex-clay/TiO ₂ hybrid photocatalyst. RSC Advances, 2016, 6, 23794-23797.	1.7	35
100	Molecular photo-charge-separators enabling single-pigment-driven multi-electron transfer and storage leading to H ₂ evolution from water. Inorganic Chemistry Frontiers, 2016, 3, 671-680.	3.0	21
101	Formation of Cadmium Sulfide and Zinc Sulfide Mixture in the Interlayer Space of Montmorillonite. European Journal of Inorganic Chemistry, 2015, 2015, 1631-1637.	1.0	9
102	Host–guest chemistry of mesoporous silicas: precise design of location, density and orientation of molecular guests in mesopores. Science and Technology of Advanced Materials, 2015, 16, 054201.	2.8	35
103	Photoinduced adsorption of spiropyran into mesoporous silicas as photomerocyanine. RSC Advances, 2015, 5, 101789-101793.	1.7	18
104	Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance. Journal of Nanoscience and Nanotechnology, 2015, 15, 10041-10045.	0.9	0
105	Formation of zinc oxide particles in cetyltrimethylammonium-smectites. Applied Clay Science, 2015, 105-106, 236-242.	2.6	21
106	Photochromic Intercalation Compounds. Structure and Bonding, 2015, , 177-211.	1.0	20
107	Visible-Light-Responsive Photocatalytic Flow Reactor Composed of Titania Film Photosensitized by Metal Complex-Clay Hybrid. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12631-12634.	4.0	29
108	Concentration of 2-phenylphenol by organoclays from aqueous sucrose solution. Applied Clay Science, 2015, 109-110, 64-67.	2.6	10

7

#	Article	IF	Citations
109	Preparation of metal sulfide mixtures in montmorillonite by solid–solid reactions. Applied Clay Science, 2015, 115, 248-253.	2.6	9
110	Preparation of copper oxide in smectites. Applied Clay Science, 2015, 104, 238-244.	2.6	18
111	Possible Roles of the Spatial Distribution of Organic Guest Species in Mesoporous Silicas to Control the Properties of the Hybrids. European Journal of Inorganic Chemistry, 2015, 2015, 1126-1136.	1.0	21
112	Functionalization of Layered Titanates. Journal of Nanoscience and Nanotechnology, 2014, 14, 2135-2147.	0.9	48
113	Lithium ion conductive behavior of TiO2 nanotube/ionic liquid matrices. Nanoscale Research Letters, 2014, 9, 539.	3.1	3
114	Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. Journal of Materials Chemistry A, 2014, 2, 1391-1399.	5.2	33
115	Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate. Physical Chemistry Chemical Physics, 2014, 16, 3520.	1.3	11
116	Direct Correlation between Nanostructure and Particle Morphology during Intercalation. Crystal Growth and Design, 2014, 14, 1516-1519.	1.4	24
117	The effect of cetyltrimethylammonium ion and type of smectites on the luminescence efficiency of bis(8-hydroxyquinoline)zinc(II) complex. Applied Clay Science, 2014, 101, 223-228.	2.6	13
118	A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates. Dalton Transactions, 2014, 43, 10340-10354.	1.6	93
119	Well-defined plate and hollow disk shaped particles of silica-dialkyldimethylammonium hybrids. Journal of Colloid and Interface Science, 2014, 420, 66-69.	5.0	14
120	In situ complexation of 8-hydroxyquinoline and $4,4\hat{a}\in^2$ -bipyridine with zinc(II) in the interlayer space of montmorillonite. Applied Clay Science, 2014, 95, 310-316.	2.6	15
121	Designed Nanostructures of Clay for Controlled Adsorption of Organic Compounds. Journal of Nanoscience and Nanotechnology, 2014, 14, 2121-2134.	0.9	68
122	A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance. Journal of Solid State Chemistry, 2013, 206, 9-13.	1.4	26
123	Efficient Immobilization of Colloidal Particles from Aqueous Suspension by Electrostatic Interactions. Langmuir, 2013, 29, 14469-14472.	1.6	3
124	Effective concentration of dichromate anions using layered double hydroxides from acidic solutions. Applied Clay Science, 2013, 75-76, 109-113.	2.6	43
125	Adsorption of cationic dyes within spherical particles of poly(N-isopropylacrylamide) hydrogel containing smectite. Applied Clay Science, 2013, 83-84, 469-473.	2.6	22
126	Preparation of nanoporous titania spherical nanoparticles. Journal of Solid State Chemistry, 2013, 199, 317-325.	1.4	10

#	Article	IF	Citations
127	Mesoporous Silica Spherical Particles. Journal of Nanoscience and Nanotechnology, 2013, 13, 2483-2494.	0.9	26
128	Preparation of Finite Particles of Layered Niobate (KCa ₂ Nb ₃ O ₁₀) for Improved Materials Performance. Industrial & Engineering Chemistry Research, 2013, 52, 3329-3333.	1.8	15
129	Preparation of Monodispersed Spherical Titania–Octadecylamine Particles Containing Silane-Coupling Reagents. Bulletin of the Chemical Society of Japan, 2012, 85, 1040-1047.	2.0	8
130	Chemical Etching Route to Prepare Nanometer-size Spherical Titania–Octadecylamine Hybrid Particles. Chemistry Letters, 2012, 41, 479-481.	0.7	4
131	Immobilization of cadmium telluride nanoparticles on the surface of hexadecyltrimethylammonium-montmorillonite. Journal of Materials Chemistry, 2012, 22, 20001.	6.7	11
132	Attachment of the Sulfonic Acid Group in the Interlayer Space of a Layered Alkali Silicate, Octosilicate. Langmuir, 2012, 28, 7505-7511.	1.6	25
133	Preparation of Finite Particles of Nitrate Forms of Layered Double Hydroxides by pH Adjustment with Anion Exchange Resin. Industrial & Engineering Chemistry Research, 2012, 51, 14414-14418.	1.8	10
134	An incorporation of cadmium selenide at organophillic surface of clay mineral. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411, 27-33.	2.3	7
135	Preparation of well-defined titania–silica spherical particles. Journal of Materials Chemistry, 2012, 22, 9963.	6.7	21
136	Preparation of mono-dispersed titanium oxide–octadecylamine hybrid spherical particles in the submicron size range. RSC Advances, 2012, 2, 1343-1349.	1.7	16
137	Two dimensional size controlled confinement of poly(vinyl pyrrolidone) in the interlayer space of swelling clay mineral. Polymer Chemistry, 2012, 3, 1069.	1.9	23
138	Organic–Inorganic Hybrids Based on Ultrathin Oxide Layers: Designed Nanostructures for Molecular Recognition. Chemistry - an Asian Journal, 2012, 7, 1980-1992.	1.7	138
139	Controlled Photocatalytic Oxidation of Benzene in Aqueous Clay Suspension. ChemCatChem, 2012, 4, 628-630.	1.8	17
140	The syntheses of thin layers of organosilica by the co-condensation of tetraethoxysilane and phenyltriethoxysilane in the presence of cationic surfactant. Journal of Materials Science, 2012, 47, 2195-2200.	1.7	6
141	Formation of mixed-ligand zinc(ii) complex-montmorillonite hybrids by solid–solid reactions. Dalton Transactions, 2011, 40, 5964.	1.6	21
142	Stabilization of photosensitizing dyes by complexation with clay. Chemical Communications, 2011, 47, 8602.	2.2	36
143	Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chemical Communications, 2011, 47, 11531.	2.2	55
144	Molecular Recognition of 4-Nonylphenol on a Layered Silicate Modified with Organic Functionalities. Langmuir, 2011, 27, 2522-2527.	1.6	49

#	Article	IF	Citations
145	Very slow formation of copper sulfide and cobalt sulfide nanoparticles in montmorillonite. Applied Clay Science, 2011, 51, 182-186.	2.6	30
146	Preparation of a series of group XIII metal–quinolate complexes in natural and synthetic smectites. Applied Clay Science, 2011, 54, 287-291.	2.6	9
147	Preparation of Layered Double Hydroxide–Organic Intercalation Compounds by Solid–Solid Reactions. Bulletin of the Chemical Society of Japan, 2011, 84, 675-677.	2.0	10
148	Relaxation of Photoexcited Tris(2,2 $\hat{a}\in^2$ -bipyridine)ruthenium Complex ([Ru(bpy)3]2+) in Mesopores. Bulletin of the Chemical Society of Japan, 2011, 84, 617-619.	2.0	6
149	Syntheses of zirconium-containing titania particles with spherical morphology and uniform size by microfluidic reactions. Journal of the Ceramic Society of Japan, 2011, 119, 507-512.	0.5	10
150	The syntheses of transparent thin layers and spherical particles of nanoporous silicas. Journal of the Ceramic Society of Japan, 2011, 119, 867-871.	0.5	2
151	Molecular recognitive photocatalytic decomposition on mesoporous silica coated TiO2 particle. Materials Letters, 2011, 65, 24-26.	1.3	29
152	Preparation of zinc oxide–montmorillonite hybrids. Materials Letters, 2011, 65, 657-660.	1.3	41
153	Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom–up processes. Chemical Society Reviews, 2011, 40, 801-828.	18.7	199
154	Controlled spatial distribution of tris(2,2′-bipyridine)ruthenium cation ([Ru(bpy)3]2+) in aluminum containing mesoporous silicas. Microporous and Mesoporous Materials, 2011, 142, 363-370.	2.2	15
155	Effective and Selective Adsorption of Zn ²⁺ from Seawater on a Layered Silicate. Angewandte Chemie - International Edition, 2011, 50, 654-656.	7.2	71
156	Platinum(II)â€Based Hydrogenâ€Evolving Catalysts Linked to Multipendant Viologen Acceptors: Experimental and DFT Indications for Bimolecular Pathways. Chemistry - A European Journal, 2011, 17, 1148-1162.	1.7	56
157	Simple preparation of a cadmium selenide–montmorillonite hybrid. Journal of Colloid and Interface Science, 2011, 357, 554-557.	5.0	10
158	Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates. Journal of Colloid and Interface Science, 2011, 358, 245-251.	5.0	38
159	Preparation of Well-defined Nanometer-sized Layered Double Hydroxides by Novel pH Adjustment Method Using Ion-exchange Resin. Chemistry Letters, 2010, 39, 1018-1019.	0.7	11
160	The Removal of 2-Phenylphenol from Aqueous Solution by Adsorption onto Organoclays. Bulletin of the Chemical Society of Japan, 2010, 83, 712-715.	2.0	25
161	Photoinduced electron transfer in tris(2,2′-bipyridine)ruthenium(ii)-viologen dyads with peptide backbones leading to long-lived charge separation and hydrogen evolution. Dalton Transactions, 2010, 39, 4421.	1.6	40
162	Formation of mono(8-hydroxyquinoline) lithium(I) complex in smectites by solid–solid reactions. Journal of Physics and Chemistry of Solids, 2010, 71, 1644-1650.	1.9	15

#	Article	IF	Citations
163	Molecular Recognitive Photocatalysis Driven by the Selective Adsorption on Layered Titanates. Journal of the American Chemical Society, 2010, 132, 3601-3604.	6.6	100
164	Efficient Visible-Light-Induced Photocatalytic Activity on Gold-Nanoparticle-Supported Layered Titanate. Journal of the American Chemical Society, 2010, 132, 16762-16764.	6.6	229
165	Hybridization of epoxy resin with a layered titanate and UV light durability and controlled refractive index of the resulting nanocomposite. Polymer Chemistry, 2010, 1, 849.	1.9	33
166	Arrangements of Interlayer Quaternary Ammonium lons in a Layered Silicate, Octosilicate. Crystal Growth and Design, 2010, 10, 2068-2072.	1.4	39
167	Size-Controlled Syntheses of Nanoporous Silica Spherical Particles through a Microfluidic Approach. Industrial & Description of the Control o	1.8	17
168	Nanospace Engineering of Methylviologen Modified Hectorite-Like Layered Silicates with Varied Layer Charge Density for the Adsorbents Design. Journal of Physical Chemistry C, 2010, 114, 539-545.	1.5	37
169	Formation of ZnS and CdS in the interlayer spaces of montmorillonite. Applied Clay Science, 2010, 50, 19-24.	2.6	45
170	Controlled spatial separation of Eu ions in layered silicates with different layer thickness. Chemical Communications, 2010, 46, 2241.	2.2	36
171	Flow reactor syntheses of functional hybrid nanoparticles. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2010, 18, 97-102.	0.0	0
172	Adsorption of tetrakis(p-sulfonatophenyl)porphyrin on kaolinite. Journal of Porous Materials, 2009, 16, 623-629.	1.3	1
173	Preparation and vapor adsorption properties of quaternary diammonium-montmorillonites. Microporous and Mesoporous Materials, 2009, 124, 30-35.	2.2	7
174	Swelling in Water of a Layered Alkali Silicate, Octosilicate, Modified with a Sulfonic Acid Group. Langmuir, 2009, 25, 5276-5281.	1.6	34
175	Preparation of Co–Al layered double hydroxides by the hydrothermal urea method for controlled particle size. Applied Clay Science, 2009, 42, 601-604.	2.6	68
176	Formation of MnS- and NiS-montmorillonites by solid-solid reactions. Applied Clay Science, 2009, 43, 238-242.	2.6	39
177	Microfluidic syntheses of well-defined sub-micron nanoporous titania spherical particles. Chemical Communications, 2009, , 6851.	2.2	36
178	Facile synthesis of Zn-Al layered double hydroxide from aqueous suspension of zinc oxide and aluminum hydroxide. Journal of the Ceramic Society of Japan, 2009, 117, 179-184.	0.5	8
179	Preparation of Iron-Containing Hectorite-Like Swelling Silicate. Bulletin of the Chemical Society of Japan, 2009, 82, 408-412.	2.0	11
180	Preparation of Propanethiol-Modified Nanoporous Silica Spherical Particles. Bulletin of the Chemical Society of Japan, 2009, 82, 121-125.	2.0	10

#	Article	IF	CITATIONS
181	In situ formation of bis(8-hydroxyquinoline) zinc(II) complex in the interlayer spaces of smectites by solid–solid reactions. Journal of Physics and Chemistry of Solids, 2008, 69, 941-948.	1.9	51
182	Solid-state intercalation and in situ formation of cadmium sulfide in the interlayer space of montmorillonite. Journal of Physics and Chemistry of Solids, 2008, 69, 1107-1111.	1.9	32
183	Formation of MnS particles in the interlayer space of montmorillonite. Materials Letters, 2008, 62, 3722-3723.	1.3	21
184	The effect of the molecular structure of a cationic azo dye on the photoinduced intercalation of phenol in a montmorillonite. Applied Clay Science, 2008, 40, 187-192.	2.6	26
185	Possible pore size effects on the state of tris(8-quinolinato)aluminum(iii) (Alq3) adsorbed in mesoporous silicas and their temperature dependence. Physical Chemistry Chemical Physics, 2008, 10, 6849.	1.3	35
186	Preparation of hectorite-like swelling silicate with controlled layer charge density. Journal of the Ceramic Society of Japan, 2008, 116, 1309-1313.	0.5	28
187	Prenylated Phloroglucinol Derivatives from <i>Hypericum perforatum</i> var. <i>angustifolium</i> . Chemical and Pharmaceutical Bulletin, 2008, 56, 1164-1167.	0.6	27
188	Synthesis of Au Nanoparticles in the Interlayer Space of a Layered Titanate Intercalated with 2-Aminoethanethiol. Bulletin of the Chemical Society of Japan, 2008, 81, 757-760.	2.0	12
189	Controlled Photocatalytic Ability of Titanium Dioxide Particle by Coating with Nanoporous Silica. Chemistry Letters, 2008, 37, 76-77.	0.7	28
190	Composition-Dependent Ion-Exchange Reactivity of Potassium Lithium Titanates. Bulletin of the Chemical Society of Japan, 2008, 81, 767-772.	2.0	14
191	Adsorption of Eu ³⁺ to smectites and fluoro-tetrasilicic mica. Clays and Clay Minerals, 2007, 55, 348-353.	0.6	35
192	Larger Scale Syntheses of Surfactant-Templated Nanoporous Silica Spherical Particles by the Stoeber Method. Journal of the Ceramic Society of Japan, 2007, 115, 315-318.	1.3	27
193	Preparation of ZnO-core/Nanoporous Silica-shell Particle and the Conversion to Hollow Nanoporous Silica Particle. Chemistry Letters, 2007, 36, 462-463.	0.7	14
194	Efficient Way to Attach Organosilyl Groups in the Interlayer Space of Layered Solids. Bulletin of the Chemical Society of Japan, 2007, 80, 1624-1629.	2.0	24
195	2P336 Characteristics of the Rhodopsin Chromophore in Clay Interlayers(Photobiology-photosynthesis, and vision and photoreception,Oral Presentations). Seibutsu Butsuri, 2007, 47, S197.	0.0	0
196	Solid-state intercalation of 8-Hydroxyquinoline into Li(I)-, Zn(II)- and Mn(II)-montmorillonites. Applied Clay Science, 2007, 35, 31-38.	2.6	62
197	Luminescence of Tris(2,2â€~-bipyridine)ruthenium(II) Cations ([Ru(bpy)3]2+) Adsorbed in Mesoporous Silicas Modified with Sulfonated Phenethyl Group. Journal of Physical Chemistry B, 2007, 111, 8836-8841.	1.2	32
198	Preparation of Au Nanoparticles in the Interlayer Space of a Layered Alkali Silicate Modified with Alkylthiol Groups. Chemistry of Materials, 2007, 19, 964-966.	3.2	58

#	Article	IF	Citations
199	Interlayer Modification of a Layered Titanate with Two Kinds of Organic Functional Units for Moleculeâ€Specific Adsorption. Angewandte Chemie - International Edition, 2007, 46, 8449-8451.	7.2	68
200	Clay Mimics Color Tuning in Visual Pigments. Angewandte Chemie - International Edition, 2007, 46, 8010-8012.	7.2	21
201	Preparation of hexagonal platy particles of nanoporous silica using hydrotalcite as morphology template. Journal of Colloid and Interface Science, 2007, 312, 311-316.	5.0	18
202	Synthesis and characterization of zinc oxide fine particles coated with titania/PDMS hybrid. Journal of Materials Science, 2007, 42, 4254-4259.	1.7	7
203	Synthesis and properties of ellipsoidal hematite/silicone core-shell particles. Journal of Materials Science, 2007, 42, 4815-4823.	1.7	16
204	Preparation of surfactant templated nanoporous silica spherical particles by the Stöber method. Effect of solvent composition on the particle size. Journal of Materials Science, 2007, 42, 5299-5306.	1.7	44
205	Chapter 7.3 Clay Mineral Organic Interactions. Developments in Clay Science, 2006, 1, 309-377.	0.3	159
206	Deposition of Thin Nanoporous Silica Layers on Solid Surfaces. Chemistry of Materials, 2006, 18, 1715-1718.	3.2	31
207	Luminescence of Tris(8-quinolinato)aluminum(III) (Alq3) Adsorbed into Mesoporous Silica. Chemistry Letters, 2006, 35, 108-109.	0.7	34
208	Preparation and Properties of Mg/Al Layered Double Hydroxide–Oleate and –Stearate Intercalation Compounds. Bulletin of the Chemical Society of Japan, 2006, 79, 336-342.	2.0	18
209	Adsorption and Possible Luminescence Detection of Nonylphenol by Eu3+–Smectites. Chemistry Letters, 2006, 35, 638-639.	0.7	11
210	Controlled Particle Size and Size Distribution of Co–Al Layered Double Hydroxide via the Hydrothermal Urea Method in Aqueous Alcohols. Bulletin of the Chemical Society of Japan, 2006, 79, 1988-1990.	2.0	19
211	1P441 Color Tuning of the Rhodopsin Chromophore Using Clay(17. Light driven system,Poster) Tj ETQq1 1 0.784	1314 rgBT	 Overlock
212	Deposition of thin mesoporous silica films on glass substrates from basic solution. Journal of Colloid and Interface Science, 2006, 303, 250-255.	5.0	11
213	Preparation and properties of trans-2-butene-1,4-bis (triphenylphosphonium)-saponite. Journal of Porous Materials, 2006, 13, 157-161.	1.3	2
214	Preparation and some properties of organically modified layered alkali titanates with alkylmethoxysilanes. Journal of Colloid and Interface Science, 2006, 296, 141-149.	5.0	38
215	Preparation of large platy particles of Co-Al layered double hydroxides. Clays and Clay Minerals, 2006, 54, 382-389.	0.6	31
216	Swelling Behaviors of an Organosilylated Lithium Potassium Titanate in Organic Solvents. Chemistry Letters, 2005, 34, 360-361.	0.7	27

#	Article	IF	Citations
217	Preparation of Mg/Al Layered Double Hydroxide–Oleate Intercalation Compound by a Reconstruction Method under Hydrothermal Condition. Chemistry Letters, 2005, 34, 810-811.	0.7	9
218	Phase Transformation of Titania Domains in the Titania/PDMS Hybrid Particles by Heat Treatment. Journal of the Ceramic Society of Japan, 2005, 113, 280-285.	1.3	1
219	Microporous Materials Derived from the Thermal Decomposition of the Titania/PDMS Hybrid Particles. Journal of Porous Materials, 2005, 12, 79-85.	1.3	7
220	Preparation of Titania/PDMS Hybrid Films and the Conversion to Porous Materials. Journal of Sol-Gel Science and Technology, 2005, 36, 257-264.	1.1	10
221	Growth of Nanoporous Silica Spherical Particles by the Stöber Method Combined with Supramolecular Templating Approach. Bulletin of the Chemical Society of Japan, 2005, 78, 1154-1159.	2.0	49
222	Photoinduced One-Electron Reduction of MV2+in Titania Nanosheets Using Porphyrin in Mesoporous Silica Thin Films. Langmuir, 2005, 21, 2644-2646.	1.6	48
223	Tris(2,2′-bipyridine)ruthenium(II)-clays as adsorbents for phenol and chlorinated phenols from aqueous solution. Applied Clay Science, 2005, 29, 45-53.	2.6	48
224	Photoregulation of the intercalation behavior of phenol for azobenzene–clay intercalation compounds. Journal of Materials Chemistry, 2005, 15, 987-992.	6.7	41
225	Adsorption of Alcohols from Aqueous Solutions into a Layered Silicate Modified with Octyltrichlorosilane. Chemistry of Materials, 2005, 17, 3717-3722.	3.2	64
226	Synthesis and properties of titanium dioxide/polydimethylsiloxane hybrid particles. Journal of Materials Science, 2004, 39, 4131-4137.	1.7	25
227	Visible Light Induced Electron Transfer and Long-Lived Charge Separated State in Cyanine Dye/Layered Titanate Intercalation Compounds. Journal of Physical Chemistry B, 2004, 108, 4268-4274.	1.2	63
228	Photocontrol of the adsorption behavior of phenol for an azobenzene-montmorillonite intercalation compound. Chemical Communications, 2004, , 320-321.	2.2	43
229	Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dyeElectronic supplementary information (ESI) available: XRD patterns of (a) the starting material Na2Ti3O7, (b) H/Ti3O7, (c) MA/Ti3O7 and (d) PA/Ti3O7. See http://www.rsc.org/suppdata/im/b3/b308800f/. Journal of Materials Chemistry, 2004, 14, 165.	6.7	96
230	Effective Luminescence Quenching of Tris(2,2-bipyridine)ruthenium(II) by Methylviologen on Clay by the Aid of Poly(vinylpyrrolidone). Langmuir, 2004, 20, 7004-7009.	1.6	28
231	Photoprocesses in Clay–Organic Complexes. , 2004, , .		4
232	p-Phenylenediammonium-Smectites as Adsorbents with Colorimetric Detection Ability for Phenols in Water. Bulletin of the Chemical Society of Japan, 2004, 77, 1165-1170.	2.0	15
233	Preparation of Aluminum-Containing Self-Standing Mesoporous Silica Films. Bulletin of the Chemical Society of Japan, 2004, 77, 1599-1606.	2.0	9
234	Easily Oxidizable Polysulfide Anion Occluded in the Interlayer Space of Mg/Al Layered Double Hydroxide. Chemistry Letters, 2004, 33, 1030-1031.	0.7	24

#	Article	IF	Citations
235	Nanoporous silica films containing aluminum and titanium. Colloid and Polymer Science, 2003, 281, 665-672.	1.0	6
236	Photoprocesses in Mesoporous Silicas Prepared by a Supramolecular Templating Approach. ChemInform, 2003, 34, no.	0.1	0
237	Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O. Applied Catalysis A: General, 2003, 254, 251-259.	2.2	107
238	Adsorption of a cationic porphyrin onto mesoporous silicas. Research on Chemical Intermediates, 2003, 29, 721-731.	1.3	29
239	Unidirectional Orientation of Methylene Blue Intercalated in K4Nb6O17 Single Crystal. Journal of Physical Chemistry B, 2003, 107, 4043-4047.	1.2	31
240	Synthesis of Interlamellar Silylated Derivatives of Magadiite and the Adsorption Behavior for Aliphatic Alcohols. Chemistry of Materials, 2003, 15, 3134-3141.	3.2	86
241	Variation of Electron-Donating Ability of Smectites as Probed by Photoreduction of Methyl Viologen. Langmuir, 2003, 19, 3578-3582.	1.6	40
242	Intercalation of a cationic azobenzene into montmorillonite. Applied Clay Science, 2003, 22, 179-185.	2.6	62
243	Surface modification of a layered alkali titanate with organosilanes. Chemical Communications, 2003, , 1262.	2.2	36
244	$1,1\hat{a}\in^2$ -Dimethyl- $4,4\hat{a}\in^2$ -bipyridinium-smectites as a novel adsorbent of phenols from water through charge-transfer interactions. Chemical Communications, 2003, , 1378-1379.	2.2	37
245	The syntheses of Mesoporous Silica Films by Supramolecular Templating Methods and the Functions of the Films. Journal of the Japan Society of Colour Material, 2003, 76, 272-279.	0.0	0
246	Intercalation of 8-hydroxyquinoline into a1-smectites by solid-solid reactions. Clays and Clay Minerals, 2002, 50, 428-434.	0.6	33
247	PREPARATION AND CHARACTERIZATION OF Eu-MAGADIITE INTERCALATION COMPOUNDS. Clays and Clay Minerals, 2002, 50, 799-806.	0.6	34
248	Adsorption of Methylene Blue onto Aluminum-Containing Mesoporous Silica Films Prepared by Rapid Solvent Evaporation Method. Bulletin of the Chemical Society of Japan, 2002, 75, 2589-2594.	2.0	9
249	Surface modification of Mesoporous Silica to Control the States of Tris(2,2′-bipyridine)ruthenium(II) Cations. Chemistry Letters, 2002, 31, 632-633.	0.7	36
250	Adsorption of Phenols onto 1,1′-Dimethyl-4,4′-bipyridinium-smectites. Chemistry Letters, 2002, 31, 812-81	3.0.7	24
251	Preparation of Aluminum-Containing Mesoporous Silica Films. Langmuir, 2002, 18, 744-749.	1.6	37
252	Homogeneous Precipitation of Uniform Hydrotalcite Particles. Langmuir, 2002, 18, 4240-4242.	1.6	302

#	ARTICLE Intercalation of cationic phthalocyanines into layered titanates and control of the	IF	CITATIONS
253	microstructuresElectronic supplementary information (ESI) available: CHN analytical data and amounts of PA and Pc intercalated in Ti3O7 (Table S1), and XRD patterns of products derived from H2Ti3O7 (Fig. S1). See http://www.rsc.org/suppdata/jm/b2/b210237b/. Journal of Materials Chemistry,	6.7	24
254	Photoisomerization of azobenzene in the interlayer space of magadiite. Journal of Materials Chemistry, 2002, 12, 3304-3307.	6.7	49
255	The intercalation of \hat{l}^2 -carotene into the organophilic interlayer space of dialkyldimethylammonium-montmorillonites. Applied Clay Science, 2002, 22, 137-144.	2.6	39
256	Photoprocesses in mesoporous silicas prepared by a supramolecular templating approach. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2002, 3, 129-146.	5.6	97
257	Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catalysis Today, 2002, 74, 241-248.	2.2	123
258	Photocatalytic Reduction of CO2 with H2O on Ti-Containing Porous Silica Thin Film Photocatalysts. Catalysis Letters, 2002, 80, 111-114.	1.4	87
259	Transparent Self-Standing Films of Titanium-Containing Nanoporous Silica. Chemistry of Materials, 2001, 13, 2900-2904.	3.2	68
260	Intercalation of a cationic cyanine dye into the layer silicate magadiite. Applied Clay Science, 2001, 19, 39-46.	2.6	38
261	Solid-state intercalation of $4,4\hat{a}\in^2$ -bipyridine and $1,2$ -di(4-pyridine)ethylene into the interlayer spaces of Co(II)-, Ni(II)- and Cu(II)-montmorillonites. Applied Clay Science, 2001, 19, 69-76.	2.6	55
262	Uni-Directional Orientation of Cyanine Dye Aggregates on a K4Nb6O17 Single Crystal: Toward Novel Supramolecular Assemblies with Three-Dimensional Anisotropy. Journal of the American Chemical Society, 2001, 123, 6949-6950.	6.6	39
263	Incorporation of tris(2,2′-bipyridine)ruthenium(II) cations ([Ru(bpy)3]2+) into a mesoporous silica. Microporous and Mesoporous Materials, 2001, 48, 159-164.	2.2	31
264	Photocontrol of the Basal Spacing of Azobenzene–Magadiite Intercalation Compound. Advanced Materials, 2001, 13, 1107-1109.	11.1	83
265	Intercalation of an amphiphilic azobenzene derivative into the interlayer space of a layered silicate, magadiite. Clay Minerals, 2001, 36, 263-266.	0.2	32
266	Preparation of transparent thin films of lamellar, hexagonal and cubic silica-surfactant mesostructured materials by rapid solvent evaporation methods. Microporous and Mesoporous Materials, 2000, 38, 35-41.	2.2	102
267	Immobilization of Photosynthetic Pigments into Silica-Surfactant Nanocomposite Films. Journal of Sol-Gel Science and Technology, 2000, 19, 543-547.	1.1	14
268	Hydrothermal Synthesis of Layered Double Hydroxideâ^'Deoxycholate Intercalation Compounds. Chemistry of Materials, 2000, 12, 3253-3255.	3.2	134
269	Solid State Intercalation of 4,4′-Bipyridine into the Interlayer Space of Montmorillonites. Molecular Crystals and Liquid Crystals, 2000, 341, 351-356.	0.3	12
270	Aluminium-containing mesoporous silica films as nano-vessels for organic photochemical reactions. Chemical Communications, 2000, , 2441-2442.	2,2	39

#	Article	IF	Citations
271	Adsorption and aggregation of a cationic cyanine dye on layered clay minerals. Applied Clay Science, 2000, 16, 161-170.	2.6	103
272	One Pot Synthesis of Layered Tetratitanate-Organic Intercalation Compounds with the Aid of Macrocyclic Compounds. Molecular Crystals and Liquid Crystals, 2000, 341, 357-362.	0.3	6
273	Aggregation of a Cationic Cyanine Dye Intercalated in the Interlayer Space of a Layered Titanate Na ₂ Ti ₃ O ₇ . Molecular Crystals and Liquid Crystals, 2000, 341, 259-264.	0.3	10
274	Incorporation of Tris(2,2â€~-bipyridine)ruthenium(II) in a Synthetic Swelling Mica with Poly(vinylpyrrolidone). Langmuir, 2000, 16, 4202-4206.	1.6	43
275	Luminescence of Tris(2,2â€-bipyridine)ruthenium(II) Cations ([Ru(bpy)3]2+) Adsorbed in Mesoporous Silica. Journal of Physical Chemistry B, 2000, 104, 8554-8556.	1.2	87
276	Interlamellar Grafting of \hat{I}^3 -Methacryloxypropylsilyl Groups on Magadiite and Copolymerization with Methyl Methacrylate. Chemistry of Materials, 2000, 12, 1702-1707.	3.2	135
277	Photochromism of azobenzene in the hydrophobic interlayer spaces of dialkyldimethylammonium-fluor-tetrasilicic mica films. Clay Minerals, 1999, 34, 213-220.	0.2	48
278	Title is missing!. Journal of Porous Materials, 1999, 6, 19-24.	1.3	16
279	Preparation and characterization of silylated-magadiites. Applied Clay Science, 1999, 15, 253-264.	2.6	86
280	Intercalation of Alkylammonium Cations into a Layered Titanate in the Presence of Macrocyclic Compounds. Chemistry of Materials, 1999, 11, 30-32.	3.2	57
281	Intercalation of Tris(2,2â€ ⁻ -bipyridine)ruthenium(II) into a Layered Silicate, Magadiite, with the Aid of a Crown Ether. Journal of Physical Chemistry B, 1999, 103, 5005-5009.	1.2	35
282	Preparation of Blow-Molded Macroscopic Bubbles of Mesoporous Silica by a Supramolecular Templating Approach. Langmuir, 1999, 15, 2227-2229.	1.6	33
283	Preparation of Self-Standing Transparent Films of Silica-Surfactant Mesostructured Materials and the Conversion to Porous Silica Films. Advanced Materials, 1998, 10, 1077-1080.	11.1	66
284	Chapter 6. Organized molecular assemblies on the surfaces of inorganic solids-photofunctional inorganic-organic supramolecular systems. Annual Reports on the Progress of Chemistry Section C, 1998, 94, 209.	4.4	54
285	Perfluoroalkylsilylation of the Interlayer Silanol Groups of a Layered Silicate, Magadiite. Chemistry of Materials, 1998, 10, 3787-3789.	3.2	76
286	Thermotropic Behavior of the Silicaâ^'Alkyltrimethylammonium Chloride Mesostructured Materials. Chemistry of Materials, 1998, 10, 1382-1385.	3.2	39
287	Preparation of Smectite/Dodecyldimethylamine N-oxide Intercalation Compounds. Langmuir, 1998, 14, 6969-6973.	1.6	13
288	Controlled microstructures of amphiphilic cationic azobenzene-montmorillonite intercalation compounds. Journal of Materials Chemistry, 1998, 8, 463-467.	6.7	136

#	Article	IF	Citations
289	Control of Interlayer Microstructures of a Layered Silicate by Surface Modification with Organochlorosilanes. Journal of the American Chemical Society, 1998, 120, 7361-7362.	6.6	155
290	Preparation of Mesoporous Silica by Supramolecular Templating Mechanisms. Journal of the Japan Society of Colour Material, 1998, 71, 646-655.	0.0	1
291	Preparation of Self-Standing Transparent Films of Silica–Surfactant Mesostructured Materials and the Conversion to Porous Silica Films. Advanced Materials, 1998, 10, 1077-1080.	11.1	2
292	Preparation of Inorganic–Organic Nanocomposites through Intercalation of Organoammonium Ions into Layered Silicates. Bulletin of the Chemical Society of Japan, 1997, 70, 2593-2618.	2.0	422
293	Preparation of Transparent Silica-Surfactant Nanocomposite Films with Controlled Microstructures. Bulletin of the Chemical Society of Japan, 1997, 70, 2833-2837.	2.0	37
294	Preparation of Layered Silicaâ^'Dialkyldimethylammonium Bromide Nanocomposites. Langmuir, 1997, 13, 1853-1855.	1.6	80
295	A simple sol–gel route for the preparation of silica–surfactant mesostructured materials. Chemical Communications, 1996, , 1149-1150.	2.2	269
296	Preparation of a Cationic Azobenzene Derivativeâ [^] Montmorillonite Intercalation Compound and the Photochemical Behavior. Chemistry of Materials, 1996, 8, 1347-1349.	3.2	54
297	Adsorption and Aggregation of a Cationic Cyanine Dye on Smectites. The Journal of Physical Chemistry, 1996, 100, 16218-16221.	2.9	105
298	Solid-state ion exchange reactions between homoionic-montmorillonites and organoammonium salts. Journal of Porous Materials, 1995, 1, 85-89.	1.3	23
299	Incorporation of Pyrene into an Oriented Transparent Film of Layered Silica-Hexadecyltrimethylammonium Bromide Nanocomposite. Langmuir, 1995, 11, 4639-4641.	1.6	60
300	Intercalation of Pyrene into Alkylammonium-Exchanged Swelling Layered Silicates: The Effects of the Arrangements of the Interlayer Alkylammonium Ions on the States of Adsorbates. Langmuir, 1995, 11, 4598-4600.	1.6	60
301	Photofunctions of Intercalation Compounds. Chemical Reviews, 1995, 95, 399-438.	23.0	999
302	Inorganic-Organic Nanocomposites Formed through Intercalation Reactions of Layered Solids Hyomen Kagaku, 1995, 16, 694-698.	0.0	1
303	Layered Silicate-Organic Interncalation Compounds as Photofunctional Materials. Studies in Surface Science and Catalysis, 1994, 83, 171-178.	1.5	2
304	Intercalation of p-Nitroaniline into Tetramethylammonium Saponite Film under Electric Field and Its Optical Second Harmonic Generation. Chemistry of Materials, 1994, 6, 715-717.	3.2	55
305	Oriented microporous film of tetramethylammonium pillared saponite. Journal of Materials Chemistry, 1994, 4, 519.	6.7	54
306	Formation of Novel Oriented Transparent Films of Layered Silica-Surfactant Nanocomposites. Journal of the American Chemical Society, 1994, 116, 7941-7942.	6.6	414

#	ARTICLE	IF	CITATIONS
307	Photophysical probe study of alkylammonium-montmorillonites. Langmuir, 1993, 9, 1529-1533.	1.6	83
308	Novel controlled luminescence of tris(2,2'-bipyridine)ruthenium(II) intercalated in a fluortetrasilicic mica with poly(vinylpyrrolidone). The Journal of Physical Chemistry, 1993, 97, 3819-3823.	2.9	58
309	Luminescence of Tris(2,2′-bipyridine)ruthenium(II) Incorporated in Mica-Organic Polymer Intercalation Compounds. Molecular Crystals and Liquid Crystals, 1992, 216, 141-144.	0.3	1
310	Selective Solid-State Intercalation of cis-translsomers into Montmorillonite. Chemistry Letters, 1992, 21, 365-368.	0.7	27
311	Layered Inorganic-Organic Nanocomposites: Application to Photofunctional Materials and Conversion to Inorganic Microporous Materials. Materials Research Society Symposia Proceedings, 1992, 286, 335.	0.1	0
312	Solid-state intercalation of acrylamide into smectites and Na-taeniolite. Applied Clay Science, 1992, 7, 291-302.	2.6	47
313	Photochemical hole burning of 1,4-dihydroxyanthraquinone intercalated in a pillared layered clay mineral. The Journal of Physical Chemistry, 1992, 96, 8116-8119.	2.9	45
314	Solid-State Intercalation of Naphthalene and Anthracene into Alkylammonium-Montmorillonites. Clays and Clay Minerals, 1992, 40, 485-490.	0.6	68
315	Intercalation of 2,2'-bipyridine and complex formation in the interlayer space of montmorillonite by solid-solid reactions. Inorganic Chemistry, 1991, 30, 584-585.	1.9	85
316	Preparation of Montmorillonite- <i>p</i> -Aminoazobenzene Intercalation Compounds and Their Photochemical Behavior. Materials Research Society Symposia Proceedings, 1991, 233, 89.	0.1	40
317	Formation of Organoammonium-Montmorillonites by Solid-Solid Reactions. Chemistry Letters, 1990, 19, 71-74.	0.7	60
318	Preparation of Montmorillonite-Organic Intercalation Compounds by Solid-Solid Reactions. Chemistry Letters, 1989, 18, 1659-1662.	0.7	50
319	Preparation of Titanium-Containing Layered Alkali Silicates. Crystal Growth and Design, 0, , .	1.4	2