
Jiangong Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4205850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management. ETransportation, 2021, 7, 100093.	14.8	206
2	A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement. Journal of Power Sources, 2015, 274, 990-1004.	7.8	155
3	Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance. Journal of Power Sources, 2020, 448, 227575.	7.8	155
4	Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation. Nature Communications, 2022, 13, 2261.	12.8	133
5	Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review. Renewable and Sustainable Energy Reviews, 2021, 141, 110790.	16.4	108
6	Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures. Journal of Power Sources, 2017, 367, 145-157.	7.8	98
7	A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries. Applied Energy, 2022, 322, 119502.	10.1	98
8	Adaptive Kalman filtering based internal temperature estimation with an equivalent electrical network thermal model for hard-cased batteries. Journal of Power Sources, 2015, 293, 351-365.	7.8	85
9	An alternating current heating method for lithium-ion batteries from subzero temperatures. International Journal of Energy Research, 2016, 40, 1869-1883.	4.5	80
10	Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. Journal of Power Sources, 2021, 484, 229312.	7.8	79
11	Nonlinear health evaluation for lithium-ion battery within full-lifespan. Journal of Energy Chemistry, 2022, 72, 333-341.	12.9	69
12	An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application. Applied Energy, 2019, 248, 149-161.	10.1	60
13	Studies on the medium-frequency impedance arc for Lithium-ion batteries considering various alternating current amplitudes. Journal of Applied Electrochemistry, 2016, 46, 157-167.	2.9	59
14	Comprehensive Investigation of a Slight Overcharge on Degradation and Thermal Runaway Behavior of Lithium-Ion Batteries. ACS Applied Materials & 2021, 11, 2021, 13, 35054-35068.	8.0	50
15	Investigation of capacity fade for 18650-type lithium-ion batteries cycled in different state of charge (SoC) ranges. Journal of Power Sources, 2021, 489, 229422.	7.8	48
16	Multi-objective optimization design and experimental investigation for a parallel liquid cooling-based Lithium-ion battery module under fast charging. Applied Thermal Engineering, 2022, 211, 118503.	6.0	41
17	Battery Internal Temperature Estimation for LiFePO4 Battery Based on Impedance Phase Shift under Operating Conditions. Energies, 2017, 10, 60.	3.1	39
18	Lithium-ion battery temperature on-line estimation based on fast impedance calculation. Journal of Energy Storage, 2019, 26, 100952.	8.1	39

JIANGONG ZHU

#	Article	IF	CITATIONS
19	A new electrochemical impedance spectroscopy model of a high-power lithium-ion battery. RSC Advances, 2014, 4, 29988-29998.	3.6	30
20	Low-Temperature Separating Lithium-Ion Battery Interfacial Polarization Based on Distribution of Relaxation Times (DRT) of Impedance. IEEE Transactions on Transportation Electrification, 2021, 7, 410-421.	7.8	29
21	Fatigue in High-Energy Commercial Li Batteries while Cycling at Standard Conditions: An In Situ Neutron Powder Diffraction Study. ACS Applied Energy Materials, 2020, 3, 6611-6622.	5.1	27
22	Unlocking the thermal safety evolution of lithium-ion batteries under shallow over-discharge. Journal of Power Sources, 2022, 521, 230990.	7.8	25
23	Revealing the Impact of Slight Electrical Abuse on the Thermal Safety Characteristics for Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 12858-12870.	5.1	20
24	Investigation the Degradation Mechanisms of Lithium-Ion Batteries under Low-Temperature High-Rate Cycling. ACS Applied Energy Materials, 2022, 5, 6462-6471.	5.1	20
25	A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model. Energies, 2019, 12, 1349.	3.1	17
26	Multiscale investigation of discharge rate dependence of capacity fade for lithium-ion battery. Journal of Power Sources, 2022, 536, 231516.	7.8	16
27	Revealing the Impact of Fast Charge Cycling on the Thermal Safety of Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7056-7068.	5.1	12
28	Investigating the critical characteristics of thermal runaway process for LiFePO4/graphite batteries by a ceased segmented method. IScience, 2021, 24, 103088.	4.1	11
29	<i>In Operando</i> analysis of the charge storage mechanism in a conversion ZnCo ₂ O ₄ anode and the application in flexible Li-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 1861-1872.	6.0	10
30	Managing Life Span of High-Energy LiNi _{0.88} Co _{0.11} Al _{0.01} O ₂ C–Si Li-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 9982-10002.	5.1	8
31	Experimental and modeling analysis of thermal runaway for <scp> LiNi _O </scp> _. <scp> ₅ Mn _O </scp> _. <scp> ₃ Co _O </scp> _. <scp> ₂ O _{. International Journal of Energy Research, 2021, 45, 10667-10681.}</scp>	4.5	6
32	Alternating Current Impedance Probing Capacity of Lithiumâ€lon Battery by Gaussian Process Regression. Energy Technology, 2022, 10, .	3.8	4
33	Lithium-Ion Battery Internal Resistance Model Based on the Porous Electrode Theory. , 2014, , .		2
34	Research on Charging Strategy of Lithium-ion Battery. , 2015, , .		2
35	Preliminary Study on the Influence of Internal Temperature Gradient on EIS Measurement and Characterization for Li-Ion Batteries. , 2015, , .		1
36	A Lithium-Ion Battery Optimized Equivalent Circuit Model based on Electrochemical Impedance Spectroscopy. , 2015, , .		1

JIANGONG ZHU

#	Article	IF	CITATIONS
37	A Neural Network-Based Regression Study for a Hybrid Battery Thermal Management System under Fast Charging. SAE International Journal of Electrified Vehicles, 0, 11, .	0.0	1
38	Investigation on the Impact of High-Temperature Calendar and Cyclic Aging on Battery Overcharge Performance. SAE International Journal of Advances and Current Practices in Mobility, 0, 4, 1953-1960.	2.0	1
39	Preliminary Study of a Distributed Thermal Model for a LFP Battery in COMSOL Inc. Multiphysics(MP) Software. , 2013, , .		0
40	Effect of Electrode Tabs Configuration on the Electric-Thermal Behavior of a Li-Ion Battery. , 2014, , .		0
41	Experimental Investigation of AC Pulse Heating Method for NMC Lithium-Ion Battery at Subzero Temperatures. , 0, , .		0
42	A Novel Battery Impedance Model Considering Internal Temperature Gradient. , 0, , .		0
43	Comparative Thermal Runaway Behavior Analysis of High-Nickel Lithium-Ion Batteries with Different Specifications. , 0, , .		0