
Kiyotaka Fujita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4205831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Substrate complex structure, active site labeling and catalytic role of the zinc ion in cysteine glycosidase. Glycobiology, 2022, 32, 171-180.	2.5	6
2	Mechanism of Cooperative Degradation of Gum Arabic Arabinogalactan Protein by Bifidobacterium longum Surface Enzymes. Applied and Environmental Microbiology, 2022, 88, aem0218721.	3.1	8
3	Two α-l-arabinofuranosidases from Bifidobacterium longum subsp. longum are involved in arabinoxylan utilization. Applied Microbiology and Biotechnology, 2022, 106, 1957-1965.	3.6	9
4	Synthesis of naturally occurring β-l-arabinofuranosyl-l-arabinofuranoside structures towards the substrate specificity evaluation of β-l-arabinofuranosidase. Bioorganic and Medicinal Chemistry, 2022, 68, 116849.	3.0	8
5	Complete Genome Sequence of Bifidobacterium longum subsp. longum JCM7052. Microbiology Resource Announcements, 2021, 10, .	0.6	1
6	Novel 3- <i>O</i> -α- <scp>d</scp> -Galactosyl-α- <scp>l</scp> -Arabinofuranosidase for the Assimilation of Gum Arabic Arabinogalactan Protein in Bifidobacterium longum subsp. <i>longum</i> . Applied and Environmental Microbiology, 2021, 87, .	3.1	10
7	Characterization of a GH36 α-D-Galactosidase Associated with Assimilation of Gum Arabic in <i>Bifidobacterium longum </i> subsp. <i> longum </i> JCM7052. Journal of Applied Glycoscience (1999), 2021, 68, 47-52.	0.7	7
8	ldentification of difructose dianhydride I synthase/hydrolase from an oral bacterium establishes a novel glycoside hydrolase family. Journal of Biological Chemistry, 2021, 297, 101324.	3.4	13
9	Crystal structure of β-L-arabinobiosidase belonging to glycoside hydrolase family 121. PLoS ONE, 2020, 15, e0231513.	2.5	8
10	Structural analysis of Î²â€Łâ€arabinobioseâ€binding protein in the metabolic pathway of hydroxyprolineâ€rich glycoproteins inBifidobacterium longum. FEBS Journal, 2020, 287, 5114-5129.	4.7	7
11	Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved. Applied Microbiology and Biotechnology, 2019, 103, 7451-7457.	3.6	17
12	Degradative enzymes for type II arabinogalactan side chains in Bifidobacterium longum subsp. longum. Applied Microbiology and Biotechnology, 2019, 103, 1299-1310.	3.6	30
13	Two Novel α- <scp>l</scp> -Arabinofuranosidases from <i>Bifidobacterium longum</i> subsp. <i>longum</i> Belonging to Glycoside Hydrolase Family 43 Cooperatively Degrade Arabinan. Applied and Environmental Microbiology, 2019, 85, .	3.1	37
14	New Sweetpotato Lines have High Amylose and Resistant Starch Contents. Starch/Staerke, 2019, 71, 1800180.	2.1	0
15	Characterization of a GH36 β-L-Arabinopyranosidase in <i>Bifidobacterium adolescentis</i> . Journal of Applied Glycoscience (1999), 2018, 65, 23-30.	0.7	5
16	Functional characterization of unique enzymes in Xanthomonas euvesicatoria related to degradation of arabinofurano-oligosaccharides on hydroxyproline-rich glycoproteins. PLoS ONE, 2018, 13, e0201982.	2.5	10
17	Physicochemical Properties and Food Uses of Starch from the New Sweetpotato Cultivar Konamizuki. Journal of Applied Glycoscience (1999), 2017, 64, 1-8.	0.7	4
18	[Review: Prize-awarded article] The Study of the Glycoside Hydrolases Acting on Sugar Chains of Glycoproteins. Bulletin of Applied Glycoscience, 2016, 6, 30-36.	0.0	0

Κιγότακα Γυμιτά

#	Article	IF	CITATIONS
19	Characterization of a β-L-Arabinopyranosidase from <i>Bifidobacterium longum</i> subsp. <i>longum</i> . Journal of Applied Glycoscience (1999), 2015, 62, 1-6.	0.7	6
20	Physicochemical Properties of Starches from Recently Bred Sweetpotatoes in Japan. Journal of Applied Glycoscience (1999), 2014, 61, 81-88.	0.7	9
21	Bifidobacterium longum subsp. longum Exo-β-1,3-Galactanase, an Enzyme for the Degradation of Type II Arabinogalactan. Applied and Environmental Microbiology, 2014, 80, 4577-4584.	3.1	35
22	Characterization of a Novel β-l-Arabinofuranosidase in Bifidobacterium longum. Journal of Biological Chemistry, 2014, 289, 5240-5249.	3.4	54
23	Crystal structure of glycoside hydrolase family 127 β-l-arabinofuranosidase from Bifidobacterium longum. Biochemical and Biophysical Research Communications, 2014, 447, 32-37.	2.1	35
24	Preparation of p-nitrophenyl β-l-arabinofuranoside as a substrate of β-l-arabinofuranosidase. Carbohydrate Research, 2013, 382, 95-100.	2.3	28
25	Functional Analysis of Degradative Enzymes for Hydroxyproline-linked ^ ^beta;-L-Arabinofuranosides in Bifidobacterium longum. Trends in Glycoscience and Glycotechnology, 2012, 24, 215-224.	0.1	11
26	Molecular Cloning and Characterization of a β-l-Arabinobiosidase in Bifidobacterium longum That Belongs to a Novel Glycoside Hydrolase Family. Journal of Biological Chemistry, 2011, 286, 5143-5150.	3.4	56
27	Characterization of a Novel β-l-Arabinofuranosidase in Bifidobacterium longum. Journal of Biological Chemistry, 2011, 286, 38079-38085.	3.4	21
28	Starch Properties of Transgenic Sweetpotato Plants Modified by RNA Interference of the Starch Synthase II Gene. Journal of Applied Glycoscience (1999), 2011, 58, 85-90.	0.7	11
29	[Review: Symposium on Amylases and Related Enzymes] Characterization of a β-L-Arabinobiosidase from <i>Bifidobacterium longum</i> . Bulletin of Applied Glycoscience, 2011, 1, 153-158.	0.0	0
30	Syntheses of mucin-type O-glycopeptides and oligosaccharides using transglycosylation and reverse-hydrolysis activities of Bifidobacterium endo-α-N-acetylgalactosaminidase. Glycoconjugate Journal, 2010, 27, 125-132.	2.7	11
31	Mutants of Mucor hiemalis Endo-β-N-acetylglucosaminidase Show Enhanced Transglycosylation and Glycosynthase-like Activities. Journal of Biological Chemistry, 2008, 283, 4469-4479.	3.4	213
32	Functions of Novel Glycosidases Isolated from Bifidobacteria. Journal of Applied Glycoscience (1999), 2008, 55, 101-109.	0.7	11
33	Identification of the Catalytic Acid Base Residue of Arthrobacter Endo-Â-N-Acetylglucosaminidase by Chemical Rescue of an Inactive Mutant. Journal of Biochemistry, 2007, 142, 301-306.	1.7	14
34	Some Distinguishable Properties between Acid-Stable and Neutral Types of α-Amylases from Acid-Producing Koji. Journal of Bioscience and Bioengineering, 2007, 104, 353-362.	2.2	58
35	Physicochemical properties of amylose-free and high-amylose starches from transgenic sweetpotatoes modified by RNA interference. Carbohydrate Polymers, 2007, 69, 233-240.	10.2	48
36	A remodeling system for the oligosaccharide chains on glycoproteins with microbial endo-β-N-acetylglucosaminidases. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 1631-1635.	2.4	28

Κιγότακα Γυμιτά

#	Article	IF	CITATIONS
37	Synthesis of mono-glucose-branched cyclodextrins with a high inclusion ability for doxorubicin and their efficient glycosylation using Mucor hiemalis endo-l²-N-acetylglucosaminidase. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1009-1013.	2.2	38
38	Identification and Molecular Cloning of a Novel Glycoside Hydrolase Family of Core 1 Type O-Glycan-specific Endo-α-N-acetylgalactosaminidase from Bifidobacterium longum. Journal of Biological Chemistry, 2005, 280, 37415-37422.	3.4	152
39	Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. Journal of Bioscience and Bioengineering, 2005, 99, 457-465.	2.2	73
40	High efficiency of transferring a native sugar chain from a glycopeptide by a microbial endoglycosidase in organic solvents. Carbohydrate Research, 2004, 339, 719-722.	2.3	38
41	Transglycosylation reaction of Mucor hiemalis endo-β-N-acetylglucosaminidase using sugar derivatives modified at C-1 or C-2 as oligosaccharide acceptors. Carbohydrate Research, 2004, 339, 1403-1406.	2.3	17
42	Mucor hiemalis endo-β-N-acetylglucosaminidase can transglycosylate a bisecting hybrid-type oligosaccharide from an ovalbumin glycopeptide. Carbohydrate Research, 2004, 339, 2633-2635.	2.3	14
43	Characterization of Endo-β-N-acetylglucosaminidase from AlkaliphilicBacillus haloduransC-125. Bioscience, Biotechnology and Biochemistry, 2004, 68, 1059-1066.	1.3	25
44	Structural and Functional Characterization of Ovotransferrin Produced byPichia pastoris. Bioscience, Biotechnology and Biochemistry, 2004, 68, 376-383.	1.3	11
45	Molecular cloning of Mucor hiemalis endo-β-N-acetylglucosaminidase and some properties of the recombinant enzyme. Archives of Biochemistry and Biophysics, 2004, 432, 41-49.	3.0	54
46	ç³,状èŒã®ç³–鎖工å¦ãƒ»ç³–鎖生物å¦. Nippon Nogeikagaku Kaishi, 2003, 77, 998-1000.	0.0	0
47	Identification of an endo-Â-N-acetylglucosaminidase gene in Caenorhabditis elegans and its expression in Escherichia coli. Glycobiology, 2002, 12, 581-587.	2.5	66
48	Transfer of high-mannose-type oligosaccharides to disaccharides by endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae. Journal of Bioscience and Bioengineering, 2002, 93, 614-617.	2.2	9
49	Transfer of High-Mannose-Type Oligosaccharides to Disaccharides by EndoBETAN-Acetylglucosaminidase from Arthrobacter protophormiae Journal of Bioscience and Bioengineering, 2002, 93, 614-617.	2.2	0
50	Transfer of high-mannose-type oligosaccharides to disaccharides by endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae. Journal of Bioscience and Bioengineering, 2002, 93, 614-7.	2.2	3
51	Chemoenzymatic Synthesis of Neoglycoproteins Using Transglycosylation with Endo-β-N-acetylglucosaminidase A. Biochemical and Biophysical Research Communications, 2001, 282, 678-682.	2.1	16
52	Tryptophan-216 Is Essential for the Transglycosylation Activity of Endo-β-N-acetylglucosaminidase A. Biochemical and Biophysical Research Communications, 2001, 283, 680-686.	2.1	25
53	ldentification of Amino Acid Residues Essential for the Substrate Specificity of Flavobacterium sp. Endo-β-N-acetylglucosaminidase. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1542-1548.	1.3	5
54	Plate assay for endo-β-N-acetylglucosaminidase activity using a chromogenic substrate synthesized by transglycosylation with Arthrobacter Endo-β-N-acetylglucosaminidase. Journal of Bioscience and Bioengineering, 2000, 90, 462-464.	2.2	5

Κιύοτακα Γυμιτά

#	Article	IF	CITATIONS
55	Synthesis of Neoglycoenzymes with Homogeneous N-Linked Oligosaccharides Using Immobilized Endo-β-N-acetylglucosaminidase A. Biochemical and Biophysical Research Communications, 2000, 267, 134-138.	2.1	49
56	Plate Assay for EndoBETAN-Acetylglucosaminidase Activity Using a Chromogenic Substrate Synthesized by Transglycosylation with Arthrobacter EndoBETAN-Acetylglucosaminidase Journal of Bioscience and Bioengineering, 2000, 90, 462-464.	2.2	1
57	Nystatin Effects on Vacuolar Function inSaccharomyces cerevisiae. Bioscience, Biotechnology and Biochemistry, 1999, 63, 1075-1082.	1.3	15
58	Cell Surface Galactosylation Is Essential for Nonsexual Flocculation in <i>Schizosaccharomyces pombe</i> . Journal of Bacteriology, 1999, 181, 1356-1359.	2.2	33
59	Enzymatic Synthesis of a Neoglycoconjugate by Transglycosylation withArthrobacterEndo-Î2-N-acetylglucosaminidase: A Substrate for Colorimetric Detection of Endo-Î2-N-acetylglucosaminidase Activity. Analytical Biochemistry, 1998, 257, 218-223.	2.4	34
60	Cloning, Sequencing, and Expression ofArthrobacter protophormiaeEndo-β-N-acetylglucosaminidase inEscherichia coli. Archives of Biochemistry and Biophysics, 1997, 338, 22-28.	3.0	63