Marcel Leist

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4205126/publications.pdf

Version: 2024-02-01

346 papers 28,942 citations

88 h-index 156 g-index

380 all docs 380 docs citations

380 times ranked 25997 citing authors

#	Article	IF	Citations
1	Stimulation of de novo glutathione synthesis by nitrofurantoin for enhanced resilience of hepatocytes. Cell Biology and Toxicology, 2022, 38, 847-864.	5.3	8
2	Neurodevelopmental toxicity assessment of flame retardants using a human DNT in vitro testing battery. Cell Biology and Toxicology, 2022, 38, 781-807.	5.3	27
3	Mapping the cellular response to electron transport chain inhibitors reveals selective signaling networks triggered by mitochondrial perturbation. Archives of Toxicology, 2022, 96, 259-285.	4.2	7
4	The hepatocyte export carrier inhibition assay improves the separation of hepatotoxic from non-hepatotoxic compounds. Chemico-Biological Interactions, 2022, 351, 109728.	4.0	18
5	Circulating (Poly)phenol Metabolites: Neuroprotection in a 3D Cell Model of Parkinson's Disease. Molecular Nutrition and Food Research, 2022, 66, e2100959.	3.3	8
6	A framework for chemical safety assessment incorporating new approach methodologies within REACH. Archives of Toxicology, 2022, 96, 743-766.	4.2	39
7	Specific Attenuation of Purinergic Signaling during Bortezomib-Induced Peripheral Neuropathy In Vitro. International Journal of Molecular Sciences, 2022, 23, 3734.	4.1	8
8	A quantitative AOP of mitochondrial toxicity based on data from three cell lines. Toxicology in Vitro, 2022, 81, 105345.	2.4	10
9	Generation of Human Nociceptor-Enriched Sensory Neurons for the Study of Pain-Related Dysfunctions. Stem Cells Translational Medicine, 2022, 11, 727-741.	3.3	9
10	Classification of Developmental Toxicants in a Human iPSC Transcriptomics-Based Test. Chemical Research in Toxicology, 2022, , .	3.3	4
11	Optimization of the <i>TeraTox</i> Assay for Preclinical Teratogenicity Assessment. Toxicological Sciences, 2022, 188, 17-33.	3.1	10
12	The Rise of Three Rs Centres and Platforms in Europe*. ATLA Alternatives To Laboratory Animals, 2022, 50, 90-120.	1.0	11
13	Human neuronal signaling and communication assays to assess functional neurotoxicity. Archives of Toxicology, 2021, 95, 229-252.	4.2	15
14	Shortened derivatives from native antimicrobial peptide LyeTx I: <i>In vitro</i> and <i>in vivo</i> biological activity assessment. Experimental Biology and Medicine, 2021, 246, 414-425.	2.4	8
15	Comparing in vitro human liver models to in vivo human liver using RNA-Seq. Archives of Toxicology, 2021, 95, 573-589.	4.2	47
16	New approach methods supporting read-across: Two neurotoxicity AOP-based IATA case studies. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 615-635.	1.5	9
17	Identifying, naming and documenting of test and tool compound stocks. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 177-182.	1.5	1
18	Functional alterations by a subgroup of neonicotinoid pesticides in human dopaminergic neurons. Archives of Toxicology, 2021, 95, 2081-2107.	4.2	32

#	Article	IF	CITATIONS
19	25th anniversary of the Berlin workshop on developmental toxicology: DevTox database update, challenges in risk assessment of developmental neurotoxicity and alternative methodologies in bone development and growth. Reproductive Toxicology, 2021, 100, 155-162.	2.9	8
20	A human stem cell-derived test system for agents modifying neuronal N-methyl-d-aspartate-type glutamate receptor Ca2+-signalling. Archives of Toxicology, 2021, 95, 1703-1722.	4.2	11
21	The Role of Astrocytes in the Neurorepair Process. Frontiers in Cell and Developmental Biology, 2021, 9, 665795.	3.7	49
22	Impairment of neuronal mitochondrial function by I-DOPA in the absence of oxygen-dependent auto-oxidation and oxidative cell damage. Cell Death Discovery, 2021, 7, 151.	4.7	10
23	Synuclein Family Members Prevent Membrane Damage by Counteracting $\hat{l}\pm$ -Synuclein Aggregation. Biomolecules, 2021, 11, 1067.	4.0	2
24	Integration of temporal single cell cellular stress response activity with logic-ODE modeling reveals activation of ATF4-CHOP axis as a critical predictor of drug-induced liver injury. Biochemical Pharmacology, 2021, 190, 114591.	4.4	14
25	Profiling of Human Neural Crest Chemoattractant Activity as a Replacement of Fetal Bovine Serum for In Vitro Chemotaxis Assays. International Journal of Molecular Sciences, 2021, 22, 10079.	4.1	5
26	Application of the 3Rs principles in the development of pharmaceutical generics. Regulatory Toxicology and Pharmacology, 2021, 125, 105016.	2.7	2
27	Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Archives of Toxicology, 2021, 95, 591-615.	4.2	26
28	Examination of microcystin neurotoxicity using central and peripheral human neurons. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 73-81.	1.5	4
29	Acute effects of the imidacloprid metabolite desnitro-imidacloprid on human nACh receptors relevant for neuronal signaling. Archives of Toxicology, 2021, 95, 3695-3716.	4.2	28
30	Development of a neural rosette formation assay (RoFA) to identify neurodevelopmental toxicants and to characterize their transcriptome disturbances. Archives of Toxicology, 2020, 94, 151-171.	4.2	32
31	Thiazolides promote G1 cell cycle arrest in colorectal cancer cells by targeting the mitochondrial respiratory chain. Oncogene, 2020, 39, 2345-2357.	5.9	27
32	Time and space-resolved quantification of plasma membrane sialylation for measurements of cell function and neurotoxicity. Archives of Toxicology, 2020, 94, 449-467.	4.2	9
33	Comparison of points of departure between subchronic and chronic toxicity studies on food additives, food contaminants and natural food constituents. Food and Chemical Toxicology, 2020, 146, 111784.	3.6	4
34	Establishment of an a priori protocol for the implementation and interpretation of an inâ€vitro testing battery for the assessment of developmental neurotoxicity. EFSA Supporting Publications, 2020, 17, 1938E.	0.7	36
35	Focus on germ-layer markers: A human stem cell-based model for in vitro teratogenicity testing. Reproductive Toxicology, 2020, 98, 286-298.	2.9	13
36	Kinetic modeling of stem cell transcriptome dynamics to identify regulatory modules of normal and disturbed neuroectodermal differentiation. Nucleic Acids Research, 2020, 48, 12577-12592.	14.5	13

#	Article	IF	CITATIONS
37	Handling deviating control values in concentration-response curves. Archives of Toxicology, 2020, 94, 3787-3798.	4.2	9
38	Setting the stage for next-generation risk assessment with non-animal approaches: the EU-ToxRisk project experience. Archives of Toxicology, 2020, 94, 3581-3592.	4.2	33
39	The influence of structural gradients in large pore organosilica materials on the capabilities for hosting cellular communities. RSC Advances, 2020, 10, 17327-17335.	3 . 6	3
40	The ENDpoiNTs Project: Novel Testing Strategies for Endocrine Disruptors Linked to Developmental Neurotoxicity. International Journal of Molecular Sciences, 2020, 21, 3978.	4.1	24
41	Design and evaluation of bi-functional iron chelators for protection of dopaminergic neurons from toxicants. Archives of Toxicology, 2020, 94, 3105-3123.	4.2	24
42	Multiparametric assessment of mitochondrial respiratory inhibition in HepG2 and RPTEC/TERT1 cells using a panel of mitochondrial targeting agrochemicals. Archives of Toxicology, 2020, 94, 2707-2729.	4.2	32
43	The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods. Archives of Toxicology, 2020, 94, 2435-2461.	4.2	30
44	Pharmacological LRH-1/Nr5a2 inhibition limits pro-inflammatory cytokine production in macrophages and associated experimental hepatitis. Cell Death and Disease, 2020, 11, 154.	6.3	20
45	Lapachol acetylglycosylation enhances its cytotoxic and pro-apoptotic activities in HL60 cells. Toxicology in Vitro, 2020, 65, 104772.	2.4	9
46	Identification of mitochondrial toxicants by combined in silico and in vitro studies – A structure-based view on the adverse outcome pathway. Computational Toxicology, 2020, 14, 100123.	3.3	13
47	Alzheimer's Risk Gene TREM2 Determines Functional Properties of New Type of Human iPSC-Derived Microglia. Frontiers in Immunology, 2020, 11, 617860.	4.8	32
48	Harnessing the power of novel animal-free test methods for the development of COVID-19 drugs and vaccines. Archives of Toxicology, 2020, 94, 2263-2272.	4.2	32
49	Incorporation of stem cell-derived astrocytes into neuronal organoids to allow neuro-glial interactions in toxicological studies. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 409-428.	1.5	22
50	Determination of benchmark concentrations and their statistical uncertainty for cytotoxicity test data and functional in vitro assays. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 155-163.	1.5	12
51	Internationalization of read-across as a validated new approach method (NAM) for regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 579-606.	1.5	48
52	Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 365-394.	1.5	123
53	CaFFEE: A program for evaluating time courses of Ca2+ dependent signal changes of complex cells loaded with fluorescent indicator dyes. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 332-336.	1.5	12
54	New European Union statistics on laboratory animal use – what really counts!. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 167-186.	1.5	22

#	Article	IF	Citations
55	Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0) – Draft for Stakeholder Discussion and Call for Action. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 490-492.	1.5	24
56	Strategy to replace animal-derived ECM by a modular and highly defined matrix. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 482-489.	1.5	2
57	Chemical concentrations in cell culture compartments (C5) – free concentrations. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 693-708.	1.5	7
58	Advancing human health risk assessment. EFSA Journal, 2019, 17, e170712.	1.8	30
59	Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Archives of Toxicology, 2019, 93, 1609-1637.	4.2	86
60	DNA Hydrogels: Functionalized DNA Hydrogels Produced by Polymerase atalyzed Incorporation of Nonâ€Natural Nucleotides as a Surface Coating for Cell Culture Applications (Adv. Healthcare Mater.) Tj ETQq0	0 071. g BT /0	Oveolock 10 T
61	Reductive modification of genetically encoded 3-nitrotyrosine sites in alpha synuclein expressed in E.coli. Redox Biology, 2019, 26, 101251.	9.0	20
62	Development of a neurotoxicity assay that is tuned to detect mitochondrial toxicants. Archives of Toxicology, 2019, 93, 1585-1608.	4.2	34
63	Paradigm shift in safety assessment using new approach methods: The EU-ToxRisk strategy. Current Opinion in Toxicology, 2019, 15, 33-39.	5.0	7
64	Functionalized DNA Hydrogels Produced by Polymeraseâ€Catalyzed Incorporation of Nonâ€Natural Nucleotides as a Surface Coating for Cell Culture Applications. Advanced Healthcare Materials, 2019, 8, e1900080.	7.6	24
65	Towards grouping concepts based on new approach methodologies in chemical hazard assessment: the read-across approach of the EU-ToxRisk project. Archives of Toxicology, 2019, 93, 3643-3667.	4.2	82
66	The synthetic peptide LyeTxI-b derived from Lycosa erythrognatha spider venom is cytotoxic to U-87 MG glioblastoma cells. Amino Acids, 2019, 51, 433-449.	2.7	13
67	The Center for Alternatives to Animal Testing in the USA and Europe. , 2019, , 109-117.		3
68	Optimizing drug discovery by Investigative Toxicology: Current and future trends. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 289-313.	1.5	38
69	Toward good in vitro reporting standards. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 3-17.	1.5	46
70	Chemical concentrations in cell culture compartments (C5) $\hat{a} \in \text{``concentration definitions. ALTEX:}$ Alternatives To Animal Experimentation, 2019, 36, 154-160.	1.5	9
71	SUIKER: Quantification of antigens in cell organelles, neurites and cellular sub-structures by imaging. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 518-520.	1.5	3
72	https://www.altex.org/index.php/altex/article/view/1339. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 682-699.	1.5	42

#	Article	IF	CITATIONS
73	Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicology and Applied Pharmacology, 2018, 354, 3-6.	2.8	90
74	Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death and Disease, 2018, 9, 226.	6.3	58
75	Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity. Toxicology and Applied Pharmacology, 2018, 354, 64-80.	2.8	29
76	An adverse outcome pathway for parkinsonian motor deficits associated with mitochondrial complex I inhibition. Archives of Toxicology, 2018, 92, 41-82.	4.2	77
77	A structure–activity relationship linking non-planar PCBs to functional deficits of neural crest cells: new roles for connexins. Archives of Toxicology, 2018, 92, 1225-1247.	4.2	15
78	Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 306-352.	1.5	121
79	Creation of a stable and highly functional pluripotent stem cell derived hepatocyte model for drug metabolisation and toxicity screening. Toxicology Letters, 2018, 295, S78.	0.8	0
80	Major changes of cell function and toxicant sensitivity in cultured cells undergoing mild, quasi-natural genetic drift. Archives of Toxicology, 2018, 92, 3487-3503.	4.2	27
81	Toxicogenomics directory of rat hepatotoxicants in vivo and in cultivated hepatocytes. Archives of Toxicology, 2018, 92, 3517-3533.	4.2	46
82	Target tissue specific activation of transcriptional programmes by mitotoxicants. Toxicology Letters, 2018, 295, S31.	0.8	0
83	Prevention of neuronal apoptosis by astrocytes through thiol-mediated stress response modulation and accelerated recovery from proteotoxic stress. Cell Death and Differentiation, 2018, 25, 2101-2117.	11.2	39
84	Relevance of the incubation period in cytotoxicity testing with primary human hepatocytes. Archives of Toxicology, 2018, 92, 3505-3515.	4.2	41
85	HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons. Nature Communications, 2018, 9, 4345.	12.8	40
86	Carbamylated Erythropoietin Decreased Proliferation and Neurogenesis in the Subventricular Zone, but Not the Dentate Gyrus, After Irradiation to the Developing Rat Brain. Frontiers in Neurology, 2018, 9, 738.	2.4	8
87	Reduced Al 2 secretion by human neurons underAconditions of strongly increased <scp>BACE</scp> activity. Journal of Neurochemistry, 2018, 147, 256-274.	3.9	15
88	Increasing the Resistance of Living Cells against Oxidative Stress by Nonnatural Surfactants as Membrane Guards. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23638-23646.	8.0	9
89	Correlation of structural features of novel 1,2,3-triazoles with their neurotoxic and tumoricidal properties. Chemico-Biological Interactions, 2018, 291, 253-263.	4.0	19
90	Toxicity, recovery, and resilience in a 3D dopaminergic neuronal in vitro model exposed to rotenone. Archives of Toxicology, 2018, 92, 2587-2606.	4.2	27

#	Article	IF	Citations
91	Normalization of data for viability and relative cell function curves. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 268-271.	1.5	15
92	Advanced Good Cell Culture Practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 353-378.	1.5	87
93	A high-throughput approach to identify specific neurotoxicants / developmental toxicants in human neuronal cell function assays. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 235-253.	1.5	46
94	Essential components of methods papers. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 429-432.	1.5	5
95	Animal testing and its alternatives $\hat{a}\in$ the most important omics is economics. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 275-305.	1.5	105
96	Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 49-74.	1.5	94
97	Multiparameter toxicity assessment of novel DOPO-derived organophosphorus flame retardants. Archives of Toxicology, 2017, 91, 407-425.	4.2	63
98	Definition of transcriptome-based indices for quantitative characterization of chemically disturbed stem cell development: introduction of the STOP-Toxukn and STOP-Toxukk tests. Archives of Toxicology, 2017, 91, 839-864.	4.2	53
99	Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay. Archives of Toxicology, 2017, 91, 365-391.	4.2	16
100	Quantification of Metabolic Rearrangements During Neural Stem Cells Differentiation into Astrocytes by Metabolic Flux Analysis. Neurochemical Research, 2017, 42, 244-253.	3.3	28
101	Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation. Archives of Toxicology, 2017, 91, 231-246.	4.2	34
102	Tipping Points and Endogenous Determinants of Nigrostriatal Degeneration by MPTP. Trends in Pharmacological Sciences, 2017, 38, 541-555.	8.7	58
103	Combination of multiple neural crest migration assays to identify environmental toxicants from a proof-of-concept chemical library. Archives of Toxicology, 2017, 91, 3613-3632.	4.2	31
104	Chemical exposure and infant leukaemia: development of an adverse outcome pathway (AOP) for aetiology and risk assessment research. Archives of Toxicology, 2017, 91, 2763-2780.	4.2	18
105	Impairment of human neural crest cell migration by prolonged exposure to interferon-beta. Archives of Toxicology, 2017, 91, 3385-3402.	4.2	12
106	Stem Cell Transcriptome Responses and Corresponding Biomarkers That Indicate the Transition from Adaptive Responses to Cytotoxicity. Chemical Research in Toxicology, 2017, 30, 905-922.	3.3	37
107	Simultaneous IRâ€Spectroscopic Observation of αâ€Synuclein, Lipids, and Solvent Reveals an Alternative Membraneâ€Induced Oligomerization Pathway. ChemBioChem, 2017, 18, 2312-2316.	2.6	12
108	Adverse outcome pathways: opportunities, limitations and open questions. Archives of Toxicology, 2017, 91, 3477-3505.	4.2	282

#	Article	IF	Citations
109	Entwicklungstoxikologische in vitro-Tests mit humanen Zellen. BioSpektrum, 2017, 23, 477-477.	0.0	0
110	In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities. Archives of Toxicology, 2017, 91, 1-33.	4.2	132
111	Metabolic flux analysis in human dopaminergic neurons under toxicant stress. Toxicology Letters, 2017, 280, S148.	0.8	0
112	Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson's disease and childhood leukaemiaâ€. EFSA Journal, 2017, 15, e04691.	1.8	20
113	New Animal-free Concepts and Test Methods for Developmental Toxicity and Peripheral Neurotoxicity. ATLA Alternatives To Laboratory Animals, 2017, 45, 253-260.	1.0	1
114	21. Mechanisms of neuronal apoptosis elicited by glutamate or nitric oxide donors., 2017,, 213-218.		1
115	Reverse-transcription quantitative PCR directly from cells without RNA extraction and without isothermal reverse-transcription: a  zero-step' RT-qPCR protocol. Biology Methods and Protocols, 2017, 2, bpx008.	2.2	6
116	Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 75-94.	1.5	26
117	Good Cell Culture Practice for stem cells and stem-cell-derived models. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 95-132.	1.5	81
118	OECD/EFSA workshop on developmental neurotoxicity (DNT): The use of non-animal test methods for regulatory purposes. ALTEX: Alternatives To Animal Experimentation, 2017, 34, 311-315.	1.5	73
119	Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 272-321.	1.5	214
120	Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Frontiers in Cellular Neuroscience, 2016, 10, 215.	3.7	120
121	Highlight report: Launch of a large integrated European in vitro toxicology project: EU-ToxRisk. Archives of Toxicology, 2016, 90, 1021-1024.	4.2	43
122	Conversion of Nonproliferating Astrocytes into Neurogenic Neural Stem Cells: Control by FGF2 and Interferon-Î ³ . Stem Cells, 2016, 34, 2861-2874.	3.2	29
123	Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants. Stem Cells Translational Medicine, 2016, 5, 476-487.	3.3	69
124	Stem cell microscopic image segmentation using supervised normalized cuts., 2016,,.		5
125	Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain. Scientific Reports, 2016, 6, 26199.	3.3	39
126	Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells. Stem Cell Research and Therapy, 2016, 7, 190.	5 . 5	34

#	Article	IF	Citations
127	Functional and phenotypic differences of pure populations of stem cellâ€derived astrocytes and neuronal precursor cells. Glia, 2016, 64, 695-715.	4.9	30
128	Identification of transcriptome signatures and biomarkers specific for potential developmental toxicants inhibiting human neural crest cell migration. Archives of Toxicology, 2016, 90, 159-180.	4.2	43
129	A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Archives of Toxicology, 2016, 90, 2725-2743.	4.2	90
130	Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiology of Disease, 2016, 89, 112-125.	4.4	47
131	Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation. Journal of Visualized Experiments, 2015, , e52333.	0.3	39
132	Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells. Cell Death and Disease, 2015, 6, e1756-e1756.	6.3	38
133	Toxicity of organic and inorganic mercury species in differentiated human neurons and human astrocytes. Journal of Trace Elements in Medicine and Biology, 2015, 32, 200-208.	3.0	91
134	International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Archives of Toxicology, 2015, 89, 269-287.	4.2	130
135	From smoking guns to footprints: mining for critical events of toxicity pathways in transcriptome data. Archives of Toxicology, 2015, 89, 813-817.	4.2	9
136	Systems Toxicology. International Journal of Toxicology, 2015, 34, 346-348.	1.2	30
137	Prevention of the degeneration of human dopaminergic neurons in an astrocyte coâ€culture system allowing endogenous drug metabolism. British Journal of Pharmacology, 2015, 172, 4119-4132.	5.4	43
138	Preferential Extracellular Generation of the Active Parkinsonian Toxin MPP ⁺ by Transporter-Independent Export of the Intermediate MPDP ⁺ . Antioxidants and Redox Signaling, 2015, 23, 1001-1016.	5.4	33
139	Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling. NeuroToxicology, 2015, 50, 56-70.	3.0	23
140	A transcriptome-based classifier to identify developmental toxicants by stem cell testing: design, validation and optimization for histone deacetylase inhibitors. Archives of Toxicology, 2015, 89, 1599-1618.	4.2	82
141	Toxicity testing in the 21st century beyond environmental chemicals. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 171-181.	1.5	74
142	Animal use for science in Europe. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 261-274.	1.5	34
143	Cellular resilience. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 247-260.	1.5	46
144	Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 327-378.	1.5	108

#	Article	IF	CITATIONS
145	Toxicogenomics directory of chemically exposed human hepatocytes. Archives of Toxicology, 2014, 88, 2261-2287.	4.2	143
146	Transcriptional and metabolic adaptation of human neurons to the mitochondrial toxicant MPP+. Cell Death and Disease, 2014, 5, e1222-e1222.	6.3	84
147	Ex vivo culture of intestinal crypt organoids as a model system for assessing cell death induction in intestinal epithelial cells and enteropathy. Cell Death and Disease, 2014, 5, e1228-e1228.	6.3	170
148	State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 441-477.	1.5	166
149	Instruments for Assessing Risk of Bias and Other Methodological Criteria of Animal Studies: Omission of Well-Established Methods. Environmental Health Perspectives, 2014, 122, A66-7.	6.0	1
150	Impairment of Glutamate Signaling in Mouse Central Nervous System Neurons In Vitro by Tri-Ortho-Cresyl Phosphate at Noncytotoxic Concentrations. Toxicological Sciences, 2014, 142, 274-284.	3.1	28
151	Epigenetics and Transcriptomics to Detect Adverse Drug Effects in Model Systems of Human Development. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 59-68.	2.5	32
152	Developmental neurotoxicity – Challenges in the 21st Century and In Vitro Opportunities. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 129-56.	1.5	103
153	Targeting Chelatable Iron as a Therapeutic Modality in Parkinson's Disease. Antioxidants and Redox Signaling, 2014, 21, 195-210.	5.4	488
154	Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Archives of Toxicology, 2014, 88, 1109-26.	4.2	62
155	Spatial control of Cdc42 signalling by a GM130–RasGRF complex regulates polarity and tumorigenesis. Nature Communications, 2014, 5, 4839.	12.8	79
156	Design Principles of Concentration-Dependent Transcriptome Deviations in Drug-Exposed Differentiating Stem Cells. Chemical Research in Toxicology, 2014, 27, 408-420.	3.3	103
157	Alphaâ€Synuclein Binds to the Inner Membrane of Mitochondria in an αâ€Helical Conformation. ChemBioChem, 2014, 15, 2499-2502.	2.6	73
158	From transient transcriptome responses to disturbed neurodevelopment: role of histone acetylation and methylation as epigenetic switch between reversible and irreversible drug effects. Archives of Toxicology, 2014, 88, 1451-1468.	4.2	67
159	Identification and Affinity-Quantification of ß-Amyloid and α-Synuclein Polypeptides Using On-Line SAW-Biosensor-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2014, 25, 1472-1481.	2.8	14
160	Acrylamide alters neurotransmitter induced calcium responses in murine ESC-derived and primary neurons. NeuroToxicology, 2014, 43, 117-126.	3.0	34
161	Application of "Omics―Technologies to In Vitro Toxicology. Methods in Pharmacology and Toxicology, 2014, , 399-432.	0.2	2
162	Lineage-Specific Regulation of Epigenetic Modifier Genes in Human Liver and Brain. PLoS ONE, 2014, 9, e102035.	2.5	32

#	Article	IF	Citations
163	Current approaches and future role of high content imaging in safety sciences and drug discovery. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 479-493.	1.5	42
164	Consensus report on the future of animal-free systemic toxicity testing. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 341-356.	1.5	113
165	State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 441-477.	1.5	101
166	Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Archives of Toxicology, 2013, 87, 2215-2231.	4.2	130
167	Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Archives of Toxicology, 2013, 87, 563-567.	4.2	140
168	A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Archives of Toxicology, 2013, 87, 721-733.	4.2	90
169	Monocrotophos in Gandaman village: India school lunch deaths and need for improved toxicity testing. Archives of Toxicology, 2013, 87, 1877-1881.	4.2	30
170	Test systems of developmental toxicity: state-of-the art and future perspectives. Archives of Toxicology, 2013, 87, 2037-2042.	4.2	29
171	Oxidative and nitrative alphaâ€synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. Journal of Neurochemistry, 2013, 125, 491-511.	3.9	116
172	Control of ${\rm A\hat{I}^2}$ release from human neurons by differentiation status and RET signaling. Neurobiology of Aging, 2013, 34, 184-199.	3.1	14
173	Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Archives of Toxicology, 2013, 87, 123-143.	4.2	222
174	Metabolomics in toxicology and preclinical research. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 209-225.	1.5	164
175	REPRINT: Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice 1. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 227-230.	1.5	23
176	Generation of genetically-modified human differentiated cells for toxicological tests and the study of neurodegenerative diseases. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 427-444.	1.5	59
177	A roadmap for hazard monitoring and risk assessment of marine biotoxins on the basis of chemical and biological test systems. ALTEX: Alternatives To Animal Experimentation, 2013, 30, 487-545.	1.5	31
178	The NOX1/4 Inhibitor GKT136901 as Selective and Direct Scavenger of Peroxynitrite. Current Medicinal Chemistry, 2013, 21, 365-376.	2.4	45
179	Automated Image Processing to Quantify Cell Migration. Informatik Aktuell, 2013, , 152-157.	0.6	1
180	Evaluation of Developmental Toxicants and Signaling Pathways in a Functional Test Based on the Migration of Human Neural Crest Cells. Environmental Health Perspectives, 2012, 120, 1116-1122.	6.0	93

#	Article	IF	Citations
181	Autocatalytic Nitration of Prostaglandin Endoperoxide Synthase-2 by Nitrite Inhibits Prostanoid Formation in Rat Alveolar Macrophages. Antioxidants and Redox Signaling, 2012, 17, 1393-1406.	5.4	8
182	Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Human Molecular Genetics, 2012, 21, 4104-4114.	2.9	88
183	Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. NeuroToxicology, 2012, 33, 911-924.	3.0	84
184	Uncoupling of ATP-depletion and cell death in human dopaminergic neurons. NeuroToxicology, 2012, 33, 769-779.	3.0	36
185	Validation and quality control of replacement alternatives – current status and future challenges. Toxicology Research, 2012, 1, 8-22.	2.1	59
186	Locally Resolved Membrane Binding Affinity of the N-Terminus of \hat{l}_{\pm} -Synuclein. Biochemistry, 2012, 51, 3960-3962.	2.5	27
187	Extensive Transcriptional Regulation of Chromatin Modifiers during Human Neurodevelopment. PLoS ONE, 2012, 7, e36708.	2.5	23
188	Compound selection for in vitro modeling of developmental neurotoxicity. Frontiers in Bioscience - Landmark, 2012, 17, 2442.	3.0	69
189	GFAPâ€independent inflammatory competence and trophic functions of astrocytes generated from murine embryonic stem cells. Glia, 2012, 60, 218-228.	4.9	35
190	Highlight report: towards the replacement of in vivo repeated dose systemic toxicity testing. Archives of Toxicology, 2012, 86, 13-15.	4.2	18
191	A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 3-91.	1.5	190
192	Characterization of mouse cell line IMA 2.1 as a potential model system to study astrocyte functions. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 261-274.	1.5	18
193	Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 373-388.	1.5	54
194	The use of biomarkers of toxicity for integrating in vitro hazard estimates into risk assessment for humans. ALTEX: Alternatives To Animal Experimentation, 2012, 29, 411-425.	1.5	87
195	Combined anti-inflammatory effects of \hat{l}^2 2-adrenergic agonists and PDE4 inhibitors on astrocytes by upregulation of intracellular cAMP. Neurochemistry International, 2011, 59, 837-846.	3.8	23
196	Rapid, complete and largeâ€scale generation of postâ€mitotic neurons from the human LUHMES cell line. Journal of Neurochemistry, 2011, 119, 957-971.	3.9	261
197	Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death and Differentiation, 2011, 18, 383-395.	11.2	79
198	Autoproteolytic Fragments Are Intermediates in the Oligomerization/Aggregation of the Parkinson's Disease Protein Alphaâ€Synuclein as Revealed by Ion Mobility Mass Spectrometry. ChemBioChem, 2011, 12, 2740-2744.	2.6	44

#	Article	IF	Citations
199	Inside Cover: Autoproteolytic Fragments Are Intermediates in the Oligomerization/Aggregation of the Parkinson's Disease Protein Alpha-Synuclein as Revealed by Ion Mobility Mass Spectrometry (ChemBioChem 18/2011). ChemBioChem, 2011, 12, 2706-2706.	2.6	0
200	Sensitivity of Dopaminergic Neuron Differentiation from Stem Cells to Chronic Low-Dose Methylmercury Exposure. Toxicological Sciences, 2011, 121, 357-367.	3.1	66
201	Assessment of Chemical-Induced Impairment of Human Neurite Outgrowth by Multiparametric Live Cell Imaging in High-Density Cultures. Toxicological Sciences, 2011, 121, 73-87.	3.1	121
202	Neuroprotection by Minocycline Caused by Direct and Specific Scavenging of Peroxynitrite. Journal of Biological Chemistry, 2011, 286, 4991-5002.	3.4	89
203	TLR2 Hypersensitivity of Astrocytes as Functional Consequence of Previous Inflammatory Episodes. Journal of Immunology, 2011, 186, 3237-3247.	0.8	52
204	Critical evaluation of the use of dogs in biomedical research and testing in Europe. ALTEX: Alternatives To Animal Experimentation, 2011, 28, 326-340.	1.5	57
205	A framework program for the teaching of alternative methods (replacement, reduction, refinement) to animal experimentation. ALTEX: Alternatives To Animal Experimentation, 2011, 28, 341-352.	1.5	26
206	Reduced Immunoproteasome Formation and Accumulation of Immunoproteasomal Precursors in the Brains of Lymphocytic Choriomeningitis Virus-Infected Mice. Journal of Immunology, 2010, 185, 5549-5560.	0.8	57
207	Erythropoietin: not just about erythropoiesis. Lancet, The, 2010, 375, 2142.	13.7	48
208	The network formation assay: a spatially standardized neurite outgrowth analytical display for neurotoxicity screening. Lab on A Chip, 2010, 10, 701.	6.0	106
209	The Center for Alternatives to Animal Testing $\hat{a}\in$ Europe (CAAT-EU): a transatlantic bridge for the paradigm shift in toxicology. ALTEX: Alternatives To Animal Experimentation, 2010, 27, 63-69.	1.5	13
210	Food for thought considerations and guidelines for basic test method descriptions in toxicology. ALTEX: Alternatives To Animal Experimentation, 2010, 27, 309-317.	1.5	46
211	Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX: Alternatives To Animal Experimentation, 2010, 27, 17-42.	1.5	83
212	Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicology and Applied Pharmacology, 2009, 241, 23-35.	2.8	94
213	Measurement of cellular \hat{l}^2 -site of APP cleaving enzyme 1 activity and its modulation in neuronal assay systems. Analytical Biochemistry, 2009, 387, 208-220.	2.4	7
214	The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX: Alternatives To Animal Experimentation, 2009, 26, 83-94.	1.5	579
215	Food for thought … on education in alternative methods in toxicology. ALTEX: Alternatives To Animal Experimentation, 2009, 26, 255-263.	1.5	9
216	Molecular basis for detection of invading pathogens in the brain. Journal of Neuroscience Research, 2008, 86, 1434-1447.	2.9	50

#	Article	IF	CITATIONS
217	High-dose erythropoietin alters platelet reactivity and bleeding time in rodents in contrast to the neuroprotective variant carbamyl-erythropoietin (CEPO). Thrombosis and Haemostasis, 2008, 99, 720-728.	3.4	53
218	On the real success of 3R approaches. ALTEX: Alternatives To Animal Experimentation, 2008, 25, 17-24.	1.5	23
219	The dawning of a new age of toxicology. ALTEX: Alternatives To Animal Experimentation, 2008, 25, 103-114.	1.5	111
220	Food for thought … on the evolution of toxicology and the phasing out of animal testing. ALTEX: Alternatives To Animal Experimentation, 2008, 25, 91-96.	1.5	81
221	The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy. ALTEX: Alternatives To Animal Experimentation, 2008, , 163-190.	1.5	61
222	The dawning of a new age of toxicology. ALTEX: Alternatives To Animal Experimentation, 2008, 25, 103-14.	1.5	36
223	The biological and ethical basis of the use of human embryonic stem cells for in vitro test systems or cell therapy. ALTEX: Alternatives To Animal Experimentation, 2008, 25, 163-90.	1.5	27
224	The Sonic Hedgehog Pathway Mediates Carbamylated Erythropoietin-enhanced Proliferation and Differentiation of Adult Neural Progenitor Cells. Journal of Biological Chemistry, 2007, 282, 32462-32470.	3.4	103
225	Wide spectrum modulation by KP-544 in models relevant for neuronal survival. NeuroReport, 2007, 18, 571-575.	1.2	3
226	Attenuated amyloid- \hat{l}^2 aggregation and neurotoxicity owing to methionine oxidation. NeuroReport, 2007, 18, 559-563.	1.2	50
227	Comparison of neuroprotective effects of erythropoietin (EPO) and carbamylerythropoietin (CEPO) against ischemia-like oxygen–glucose deprivation (OGD) and NMDA excitotoxicity in mouse hippocampal slice cultures. Experimental Neurology, 2007, 204, 106-117.	4.1	75
228	Functional and immunochemical characterisation of different antibodies against the erythropoietin receptor. Journal of Neuroscience Methods, 2007, 164, 50-58.	2.5	60
229	Reduced Functional Deficits, Neuroinflammation, and Secondary Tissue Damage after Treatment of Stroke by Nonerythropoietic Erythropoietin Derivatives. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 552-563.	4.3	128
230	Efficacy of smallâ€molecule glycogen synthase kinaseâ€3 inhibitors in the postnatal rat model of tau hyperphosphorylation. British Journal of Pharmacology, 2007, 152, 959-979.	5.4	115
231	Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Research, 2007, 1185, 18-32.	2.2	78
232	Pathological apoptosis in the developing brain. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 993-1010.	4.9	162
233	Nonhematopoietic Erythropoietin Derivatives Prevent Motoneuron Degeneration In Vitro and In Vivo. Molecular Medicine, 2006, 12, 153-160.	4.4	82
234	Decrease in parvalbumin-expressing neurons in the hippocampus and increased phencyclidine-induced locomotor activity in the rat methylazoxymethanol (MAM) model of schizophrenia. European Journal of Neuroscience, 2006, 23, 279-284.	2.6	120

#	Article	IF	Citations
235	Neuroprotective properties of memantine in differentin vitroandin vivomodels of excitotoxicity. European Journal of Neuroscience, 2006, 23, 2611-2622.	2.6	154
236	A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption. Journal of Neurochemistry, 2006, 96, 1242-1252.	3.9	32
237	The inflammatory transcriptome of reactive murine astrocytes and implications for their innate immune function. Journal of Neurochemistry, 2006, 96, 893-907.	3.9	85
238	The dynamics of the LPS triggered inflammatory response of murine microglia under different culture and in vivo conditions. Journal of Neuroimmunology, 2006, 180, 71-87.	2.3	187
239	Development of Non-Erythropoietic Erythropoietin Variants for Neuroprotection., 2006,, 211-219.		3
240	Inhibition of microglial inflammation by the MLK inhibitor CEPâ€1347. Journal of Neurochemistry, 2005, 92, 1439-1451.	3.9	65
241	CEP-11004, an inhibitor of the SAPK/JNK pathway, reduces TNF-α release from lipopolysaccharide-treated cells and mice. European Journal of Pharmacology, 2005, 515, 179-187.	3.5	36
242	Progressive Degeneration of Human Mesencephalic Neuron-Derived Cells Triggered by Dopamine-Dependent Oxidative Stress Is Dependent on the Mixed-Lineage Kinase Pathway. Journal of Neuroscience, 2005, 25, 6329-6342.	3.6	224
243	Increased erythropoietin production after myocardial infarction in mice. Heart, 2005, 92, 838-839.	2.9	11
244	Botulinum neurotoxin C initiates two different programs for neurite degeneration and neuronal apoptosis. Journal of Cell Biology, 2005, 168, 607-618.	5.2	81
245	Improvement of embryonic dopaminergic neurone survival in culture and after grafting into the striatum of hemiparkinsonian rats by CEPâ€1347. Journal of Neurochemistry, 2004, 88, 698-707.	3.9	14
246	Defined inflammatory states in astrocyte cultures: correlation with susceptibility towards CD95â€driven apoptosis. Journal of Neurochemistry, 2004, 88, 181-193.	3.9	83
247	Specific Modulation of Astrocyte Inflammation by Inhibition of Mixed Lineage Kinases with CEP-1347. Journal of Immunology, 2004, 173, 2762-2770.	0.8	65
248	Sensitization to the Lysosomal Cell Death Pathway upon Immortalization and Transformation. Cancer Research, 2004, 64, 5301-5310.	0.9	141
249	The nonerythropoietic asialoerythropoietin protects against neonatal hypoxiaâ€ischemia as potently as erythropoietin. Journal of Neurochemistry, 2004, 91, 900-910.	3.9	110
250	Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death and Differentiation, 2004, 11, 1166-1178.	11.2	109
251	Lysosomes in cell death. Oncogene, 2004, 23, 2881-2890.	5.9	658
252	Asialoerythropoietin is not effective in the R6/2 line of Huntington's disease mice. BMC Neuroscience, 2004, 5, 17.	1.9	63

#	Article	IF	Citations
253	Poly(ADP-ribose) glycohydrolase as a target for neuroprotective intervention: assessment of currently available pharmacological tools. European Journal of Pharmacology, 2004, 497, 7-16.	3.5	42
254	Modification of apoptosis-related genes and CD95 signaling in cytokine-treated astrocytes. Signal Transduction, 2004, 4, 17-28.	0.4	2
255	P3-202 Neuroprotective properties of memantine in different models of excitotoxicity. Neurobiology of Aging, 2004, 25, S412-S413.	3.1	0
256	Derivatives of Erythropoietin That Are Tissue Protective But Not Erythropoietic. Science, 2004, 305, 239-242.	12.6	775
257	P1-198 Oxidation of $\hat{Al^2}$ 1-42 and $\hat{Al^2}$ 1-40E22G methionine 35 prevents the formation ofoligomers and protofibrils and inhibits in vitro neurotoxicity-implications for Alzheimer's disease. Neurobiology of Aging, 2004, 25, S152.	3.1	1
258	Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression. Brain Research, 2003, 970, 47-57.	2.2	117
259	Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death and Differentiation, 2003, 10, 1156-1164.	11.2	127
260	Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity <i>in vivo</i> . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6741-6746.	7.1	416
261	From Caspases to Alternative Cell-Death Mechanisms. , 2003, , 101-122.		0
262	Mitogen-Activated Protein Kinase-Activated Protein Kinase 2-Deficient Mice Show Increased Susceptibility to <i>Listeria monocytogenes</i> Infection. Journal of Immunology, 2002, 168, 4667-4673.	0.8	73
263	Disialoganglioside GD3 is released by microglia and induces oligodendrocyte apoptosis. Cell Death and Differentiation, 2002, 9, 758-767.	11.2	50
264	Burning up TNF toxicity for cancer therapy. Nature Medicine, 2002, 8, 667-668.	30.7	6
265	Eradication of glioblastoma, and breast and colon carcinoma xenografts by Hsp70 depletion. Cancer Research, 2002, 62, 7139-42.	0.9	118
266	In Vivo and in Vitro Evidence for Extracellular Caspase Activity Released from Apoptotic Cells. Biochemical and Biophysical Research Communications, 2001, 283, 1111-1117.	2.1	46
267	Differential Effects of Bcl-2 on Cell Death Triggered under ATP-Depleting Conditions. Experimental Cell Research, 2001, 262, 8-16.	2.6	31
268	Cascade of Caspase Activation in Potassium-Deprived Cerebellar Granule Neurons: Targets for Treatment with Peptide and Protein Inhibitors of Apoptosis. Molecular and Cellular Neurosciences, 2001, 17, 717-731.	2.2	77
269	Apoptosis in Caspase-inhibited Neurons. Molecular Medicine, 2001, 7, 36-48.	4.4	101
270	Calpain inhibitors prevent nitric oxide-triggered excitotoxic apoptosis. NeuroReport, 2001, 12, 3645-3648.	1.2	41

#	Article	IF	Citations
271	Excitotoxins, nitric oxide and programmed neuronal death. Advances in Cell Aging and Gerontology, 2001, , 323-347.	0.1	0
272	Synthesis of Ganglioside GD3 and its Comparison with Bovine GD3 with Regard to Oligodendrocyte Apoptosis Mitochondrial Damage. Chemistry - A European Journal, 2001, 7, 2178-2184.	3.3	38
273	Triggering of apoptosis by cathepsins. Cell Death and Differentiation, 2001, 8, 324-326.	11.2	186
274	Four deaths and a funeral: from caspases to alternative mechanisms. Nature Reviews Molecular Cell Biology, 2001, 2, 589-598.	37.0	1,737
275	Caspase-3 activity is present in cerebrospinal fluid from patients with traumatic brain injury. Journal of Neuroimmunology, 2001, 121, 76-78.	2.3	49
276	Cathepsin B Acts as a Dominant Execution Protease in Tumor Cell Apoptosis Induced by Tumor Necrosis Factor. Journal of Cell Biology, 2001, 153, 999-1010.	5.2	586
277	A2E Inhibits Mitochondrial Function, Causes the Release of Pro-Apoptotic Proteins and Induces Apoptosis in Mammalian Cells., 2001,, 223-233.		1
278	Apoptosis in caspase-inhibited neurons. Molecular Medicine, 2001, 7, 36-48.	4.4	30
279	Energy Requirement for Caspase Activation and Neuronal Cell Death. Brain Pathology, 2000, 10, 276-282.	4.1	112
280	Phagocytosis of Nonapoptotic Cells Dying by Caspase- Independent Mechanisms. Journal of Immunology, 2000, 164, 6520-6529.	0.8	94
281	Age-related Macular Degeneration. Journal of Biological Chemistry, 2000, 275, 39625-39630.	3.4	279
282	Metabolic Depletion of Atp by Fructose Inversely Controls Cd95- and Tumor Necrosis Factor Receptor 1–Mediated Hepatic Apoptosis. Journal of Experimental Medicine, 2000, 191, 1975-1986.	8.5	87
283	Apoptosis in the Dorsal Lateral Geniculate Nucleus after Monocular Deprivation Involves Glutamate Signaling, NO Production, and PARP Activation. Biochemical and Biophysical Research Communications, 2000, 278, 360-367.	2.1	19
284	Additive Effects of Caspase Inhibitor and Lazaroid on the Survival of Transplanted Rat and Human Embryonic Dopamine Neurons. Experimental Neurology, 2000, 164, 102-111.	4.1	80
285	ATP Controls Neuronal Apoptosis Triggered by Microtubule Breakdown or Potassium Deprivation. Molecular Medicine, 1999, 5, 477-489.	4.4	88
286	Apoptosis and necrosis: different execution of the same death. Biochemical Society Symposia, 1999, 66, 69-73.	2.7	130
287	Execution of Apoptosis: Converging or Diverging Pathways?. Biological Chemistry, 1999, 380, 1035-40.	2.5	33
288	The Expression of Plasma Membrane Ca2+ Pump Isoforms in Cerebellar Granule Neurons Is Modulated by Ca2+. Journal of Biological Chemistry, 1999, 274, 1667-1676.	3.4	100

#	Article	IF	Citations
289	Differential effects of Bcl-2 overexpression on fibre outgrowth and survival of embryonic dopaminergic neurons in intracerebral transplants. European Journal of Neuroscience, 1999, 11, 3073-3081.	2.6	39
290	Caspase inhibition reduces apoptosis and increases survival of nigral transplants. Nature Medicine, 1999, 5, 97-100.	30.7	279
291	Cytoprotection against lipid hydroperoxides correlates with increased glutathione peroxidase activities, but not selenium uptake from different selenocompounds. Biological Trace Element Research, 1999, 68, 159-174.	3.5	11
292	Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8727-8732.	7.1	215
293	Neuronal cell death: a demise with different shapes. Trends in Pharmacological Sciences, 1999, 20, 46-51.	8.7	241
294	Tributyltin-Induced Apoptosis Requires Glycolytic Adenosine Trisphosphate Production. Chemical Research in Toxicology, 1999, 12, 874-882.	3.3	59
295	Selective Nitration of Prostacyclin Synthase and Defective Vasorelaxation in Atherosclerotic Bovine Coronary Arteries. American Journal of Pathology, 1999, 154, 1359-1365.	3.8	151
296	Inhibition of Mitochondrial ATP Generation by Nitric Oxide Switches Apoptosis to Necrosis. Experimental Cell Research, 1999, 249, 396-403.	2.6	250
297	Nitric Oxide Inhibits Execution of Apoptosis at Two Distinct ATP-Dependent Steps Upstream and Downstream of Mitochondrial CytochromecRelease. Biochemical and Biophysical Research Communications, 1999, 258, 215-221.	2.1	57
298	Prevention of Endotoxin-Induced Lethality, but Not of Liver Apoptosis in Poly(ADP-ribose) Polymerase-Deficient Mice. Biochemical and Biophysical Research Communications, 1999, 263, 433-438.	2.1	49
299	Neuronal death in nigral grafts in the absence of poly (ADP-ribose) polymerase activation. NeuroReport, 1999, 10, 3347-3351.	1.2	12
300	Calcium and Cell Death., 1999,, 69-90.		5
301	ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation. Molecular Medicine, 1999, 5, 477-89.	4.4	31
302	Hypersensitivity to seizures in \hat{l}^2 -amyloid precursor protein deficient mice. Cell Death and Differentiation, 1998, 5, 858-866.	11.2	104
303	Simultaneous release of adenylate kinase and cytochrome c in cell death. Cell Death and Differentiation, 1998, 5, 1001-1003.	11.2	97
304	Cytokine-mediated hepatic apoptosis. , 1998, 133, 109-155.		22
305	Calcium and neuronal death. , 1998, 132, 79-125.		96
306	Selective Proteolysis of the Nuclear Replication Factor MCM3 in Apoptosis. Experimental Cell Research, 1998, 238, 415-421.	2.6	40

#	Article	IF	Citations
307	Apoptosis, Excitotoxicity, and Neuropathology. Experimental Cell Research, 1998, 239, 183-201.	2.6	258
308	Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicology Letters, 1998, 102-103, 139-142.	0.8	293
309	1-Methyl-4-Phenylpyridinium Induces Autocrine Excitotoxicity, Protease Activation, and Neuronal Apoptosis. Molecular Pharmacology, 1998, 54, 789-801.	2.3	144
310	Apoptosis Versus Necrosis: The Shape of Neuronal Cell Death. Results and Problems in Cell Differentiation, 1998, 24, 105-135.	0.7	23
311	Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis. Journal of Experimental Medicine, 1997, 185, 1481-1486.	8.5	1,773
312	Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology, 1997, 112, 923-934.	1.3	191
313	Apoptosis in the Absence of Poly- (ADP-ribose) Polymerase. Biochemical and Biophysical Research Communications, 1997, 233, 518-522.	2.1	138
314	The Shape of Cell Death. Biochemical and Biophysical Research Communications, 1997, 236, 1-9.	2.1	295
315	Detectable concentrations of Fas ligand in cerebrospinal fluid after severe head injury. Journal of Neuroimmunology, 1997, 80, 93-96.	2.3	56
316	Caspase-Mediated Apoptosis in Neuronal Excitotoxicity Triggered by Nitric Oxide. Molecular Medicine, 1997, 3, 750-764.	4.4	174
317	Peroxynitrite and Nitric Oxide Donors Induce Neuronal Apoptosis by Eliciting Autocrine Excitotoxicity. European Journal of Neuroscience, 1997, 9, 1488-1498.	2.6	130
318	Energy supply and the shape of death in neurons and lymphoid cells. Cell Death and Differentiation, 1997, 4, 435-442.	11.2	122
319	Excitotoxicity. Cell Death and Differentiation, 1997, 4, 517-518.	11.2	1
320	Mitochondrial signals and energy requirement in cell death. Cell Death and Differentiation, 1997, 4, 516-516.	11.2	12
321	The novel SAR-binding domain of scaffold attachment factor A (SAF-A) is a target in apoptotic nuclear breakdown. EMBO Journal, 1997, 16, 7361-7371.	7.8	125
322	ICE-protease inhibitors block murine liver injury and apoptosis caused by CD95 or by TNF-α. Immunology Letters, 1997, 55, 5-10.	2.5	130
323	Caspase-mediated apoptosis in neuronal excitotoxicity triggered by nitric oxide. Molecular Medicine, 1997, 3, 750-64.	4.4	42
324	T Cell Stimulus-Induced Crosstalk between Lymphocytes and Liver Macrophages Results in Augmented Cytokine Release. Experimental Cell Research, 1996, 229, 137-146.	2.6	69

#	Article	IF	CITATIONS
325	A novel mechanism of murine hepatocyte death inducible by Concanavalin A. Journal of Hepatology, 1996, 25, 948-959.	3.7	56
326	The 55-kD Tumor Necrosis Factor Receptor and CD95 Independently Signal Murine Hepatocyte Apoptosis and Subsequent Liver Failure. Molecular Medicine, 1996, 2, 109-124.	4.4	122
327	Conventional cell culture media do not adequately supply cells with antioxidants and thus facilitate peroxide-induced genotoxicity. Free Radical Biology and Medicine, 1996, 21, 297-306.	2.9	141
328	Cytoskeletal Breakdown and Apoptosis Elicited by NO Donors in Cerebellar Granule Cells Require NMDA Receptor Activation. Journal of Neurochemistry, 1996, 67, 2484-2493.	3.9	128
329	DNA fragmentation in mouse organs during endotoxic shock. American Journal of Pathology, 1996, 149, 1381-93.	3.8	95
330	The 55-kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure. Molecular Medicine, 1996, 2, 109-24.	4.4	39
331	Enhanced release of interleukin-10 and soluble tumor necrosis factor receptors as novel principles of methylxanthine action in murine models of endotoxic shock. Journal of Pharmacology and Experimental Therapeutics, 1996, 278, 421-31.	2.5	31
332	Tumor necrosis factor production in the perfused mouse liver and its pharmacological modulation by methylxanthines. Journal of Pharmacology and Experimental Therapeutics, 1996, 276, 968-76.	2.5	8
333	Concanavalin A—induced T-cell—mediated hepatic injury in mice: The role of tumor necrosis factor. Hepatology, 1995, 21, 190-198.	7.3	377
334	Interleukin-1 and nitric oxide protect against tumor necrosis factor \hat{l}_{\pm} -induced liver injury through distinct pathways. Hepatology, 1995, 22, 1829-1837.	7.3	84
335	Novel urinary metabolite of alpha-tocopherol, 2,5,7,8-tetramethyl-2(2'-carboxyethyl)-6-hydroxychroman, as an indicator of an adequate vitamin E supply?. American Journal of Clinical Nutrition, 1995, 62, 1527S-1534S.	4.7	222
336	Tumor necrosis factor-induced hepatic DNA fragmentation as an early marker of T cell-dependent liver injury in mice. Gastroenterology, 1995, 109, 166-176.	1.3	97
337	Tolerance against tumor necrosis factor \hat{l}_{\pm} (TNF)-induced hepatotoxicity in mice: the role of nitric oxide. Toxicology Letters, 1995, 82-83, 227-231.	0.8	6
338	Concanavalin A?induced T-cell?Mediated hepatic injury in mice: The role of tumor necrosis factor*1. Hepatology, 1995, 21, 190-198.	7.3	433
339	Tunicamycin potently inhibits tumor necrosis factor-induced hepatocyte apoptosis. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1995, 292, 201-204.	0.8	3
340	Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. American Journal of Pathology, 1995, 146, 1220-34.	3.8	407
341	Interleukin-1 and nitric oxide protect against tumor necrosis factor alpha-induced liver injury through distinct pathways. Hepatology, 1995, 22, 1829-37.	7. 3	66
342	Activation of the 55 kDa TNF receptor is necessary and sufficient for TNF-induced liver failure, hepatocyte apoptosis, and nitrite release. Journal of Immunology, 1995, 154, 1307-16.	0.8	254

#	Article	IF	CITATIONS
343	Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. Journal of Immunology, 1994, 153, 1778-88.	0.8	378
344	A cytosolic oxygenase activity involved in the bioactivation of 2-aminofluorene. Toxicology, 1992, 71, 7-20.	4.2	13
345	Granulocyte colony-stimulating factor treatment protects rodents against lipopolysaccharide-induced toxicity via suppression of systemic tumor necrosis factor-alpha. Journal of Immunology, 1992, 149, 918-24.	0.8	157
346	Mechanisms of neuronal apoptosis elicited by glutamate or nitric oxide donors., 0,, 215-220.		0