Vidu Garg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4205002/publications.pdf

Version: 2024-02-01

96 6,824 38 80 g-index

107 107 107 7898

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Mutations in NOTCH1 cause aortic valve disease. Nature, 2005, 437, 270-274.	27.8	1,274
2	GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature, 2003, 424, 443-447.	27.8	1,086
3	Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation, 2018, 138, e653-e711.	1.6	387
4	Tbx1, a DiGeorge Syndrome Candidate Gene, Is Regulated by Sonic Hedgehog during Pharyngeal Arch Development. Developmental Biology, 2001, 235, 62-73.	2.0	282
5	A Molecular Pathway Revealing a Genetic Basis for Human Cardiac and Craniofacial Defects. Science, 1999, 283, 1158-1161.	12.6	280
6	Spectrum of heart disease associated with murine and human GATA4 mutation. Journal of Molecular and Cellular Cardiology, 2007, 43, 677-685.	1.9	218
7	GATA4 sequence variants in patients with congenital heart disease. Journal of Medical Genetics, 2007, 44, 779-783.	3.2	180
8	Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Developmental Biology, 2009, 326, 368-377.	2.0	168
9	Genetics of Congenital Heart Disease. Current Cardiology Reviews, 2010, 6, 91-97.	1.5	153
10	Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. Journal of Molecular and Cellular Cardiology, 2013, 60, 27-35.	1.9	142
11	The Congenital Heart Disease Genetic Network Study. Circulation Research, 2013, 112, 698-706.	4.5	142
12	Identification of GATA6 Sequence Variants in Patients With Congenital Heart Defects. Pediatric Research, 2010, 68, 281-285.	2.3	105
13	Molecular genetics of aortic valve disease. Current Opinion in Cardiology, 2006, 21, 180-184.	1.8	104
14	Percutaneous Patent Ductus Arteriosus (PDA) Closure in Very Preterm Infants: Feasibility and Complications. Journal of the American Heart Association, 2016, 5, .	3.7	100
15	Inhibitory Role of Notch1 in Calcific Aortic Valve Disease. PLoS ONE, 2011, 6, e27743.	2.5	96
16	A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data. Nature Biotechnology, 2014, 32, 663-669.	17.5	93
17	Cryptic Chromosomal Abnormalities Identified in Children With Congenital Heart Disease. Pediatric Research, 2008, 64, 358-363.	2.3	91
18	Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo. PLoS Genetics, 2012, 8, e1002690.	3.5	77

#	Article	IF	CITATIONS
19	Insights into the genetic basis of congenital heart disease. Cellular and Molecular Life Sciences, 2006, 63, 1141-1148.	5.4	76
20	Rare GATA5 sequence variants identified in individuals with bicuspid aortic valve. Pediatric Research, 2014, 76, 211-216.	2.3	74
21	MicroRNA miR145 Regulates TGFBR2 Expression and Matrix Synthesis in Vascular Smooth Muscle Cells. Circulation Research, 2015, 116, 23-34.	4.5	72
22	Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth Defects Research, 2018, 110, 1504-1516.	1.5	72
23	Utilization of Whole Exome Sequencing to Identify Causative Mutations in Familial Congenital Heart Disease. Circulation: Cardiovascular Genetics, 2016, 9, 320-329.	5.1	71
24	Enhancing Literacy in Cardiovascular Genetics: A Scientific Statement From the American Heart Association. Circulation: Cardiovascular Genetics, 2016, 9, 448-467.	5.1	64
25	Chromosomal Haplotypes by Genetic Phasing of Human Families. American Journal of Human Genetics, 2011, 89, 382-397.	6.2	63
26	Screening and biochemical analysis of GATA4 sequence variations identified in patients with congenital heart disease. American Journal of Medical Genetics, Part A, 2007, 143A, 817-823.	1.2	59
27	Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease. JCI Insight, 2017, 2, .	5.0	59
28	Inhibition of Notch1 Signaling Reduces Abdominal Aortic Aneurysm in Mice by Attenuating Macrophage-Mediated Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 3012-3023.	2.4	58
29	Genetics of Valvular Heart Disease. Current Cardiology Reports, 2014, 16, 487.	2.9	57
30	Endothelial Notch1 Is Required for Proper Development of the Semilunar Valves and Cardiac Outflow Tract. Journal of the American Heart Association, 2016, 5, .	3.7	55
31	Disruption of myocardial Gata4 and Tbx5 results in defects in cardiomyocyte proliferation and atrioventricular septation. Human Molecular Genetics, 2014, 23, 5025-5035.	2.9	50
32	Use of a targeted, combinatorial next-generation sequencing approach for the study of bicuspid aortic valve. BMC Medical Genomics, 2014, 7, 56.	1.5	50
33	Pharmacological Inhibitor of Notch Signaling Stabilizes the Progression of Small Abdominal Aortic Aneurysm in a Mouse Model. Journal of the American Heart Association, 2014, 3, e001064.	3.7	50
34	Cardiomyocyte Proliferation and Maturation: Two Sides of the Same Coin for Heart Regeneration. Frontiers in Cell and Developmental Biology, 2020, 8, 594226.	3.7	50
35	Etiology of Valvular Heart Disease. Circulation Journal, 2014, 78, 1801-1807.	1.6	45
36	A novel mutation in LAMIN A/C is associated with isolated early-onset atrial fibrillation and progressive atrioventricular block followed by cardiomyopathy and sudden cardiac death. Heart Rhythm, 2009, 6, 707-710.	0.7	44

#	Article	IF	CITATIONS
37	Notch1 haploinsufficiency causes ascending aortic aneurysms in mice. JCI Insight, 2017, 2, .	5.0	44
38	Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Science Advances, 2021, 7, .	10.3	43
39	Genetic Abnormalities in i>FOXP1 / i> Are Associated with Congenital Heart Defects. Human Mutation, 2013, 34, 1226-1230.	2.5	39
40	Submicroscopic Chromosomal Copy Number Variations Identified in Children With Hypoplastic Left Heart Syndrome. Pediatric Cardiology, 2012, 33, 757-763.	1.3	35
41	Measuring genetic knowledge: a brief survey instrument for adolescents and adults. Clinical Genetics, 2016, 89, 235-243.	2.0	33
42	A genome-wide association study of congenital cardiovascular left-sided lesions shows association with a locus on chromosome 20. Human Molecular Genetics, 2016, 25, 2331-2341.	2.9	31
43	Human balanced translocation and mouse gene inactivation implicate Basonuclin 2 in distal urethral development. European Journal of Human Genetics, 2011, 19, 540-546.	2.8	28
44	Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background. Journal of Cardiovascular Development and Disease, 2015, 2, 17-30.	1.6	28
45	Early versus delayed umbilical cord clamping in infants with congenital heart disease: a pilot, randomized, controlled trial. Journal of Perinatology, 2015, 35, 826-831.	2.0	28
46	Dynamic Heterogeneity of the Heart Valve Interstitial Cell Population in Mitral Valve Health and Disease. Journal of Cardiovascular Development and Disease, 2015, 2, 214-232.	1.6	26
47	Genetics of congenital heart disease: a narrative review of recent advances and clinical implications. Translational Pediatrics, 2021, 10, 2366-2386.	1.2	26
48	Reclassification of Variants of Uncertain Significance in Children with Inherited Arrhythmia Syndromes is Predicted by Clinical Factors. Pediatric Cardiology, 2019, 40, 1679-1687.	1.3	24
49	Subtype-specific cardiomyocytes for precision medicine: Where are we now?. Stem Cells, 2020, 38, 822-833.	3.2	24
50	In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harbor Perspectives in Biology, 2021, 13, a036764.	5.5	23
51	Lifetime Prevalence of Sexual Intercourse and Contraception Use at Last Sex Among Adolescents and Young Adults With Congenital Heart Disease. Journal of Adolescent Health, 2015, 56, 396-401.	2.5	22
52	Genetic basis of aortic valvular disease. Current Opinion in Cardiology, 2017, 32, 239-245.	1.8	22
53	Nestin expression is dynamically regulated in cardiomyocytes during embryogenesis. Journal of Cellular Physiology, 2018, 233, 3218-3229.	4.1	21
54	Fetal and postnatal lung defects reveal a novel and required role for Fgf8 in lung development. Developmental Biology, 2010, 347, 92-108.	2.0	19

#	Article	IF	CITATIONS
55	Heredity of bicuspid aortic valve: is family screening indicated?. Heart, 2011, 97, 1193-1195.	2.9	19
56	Assessment of large copy number variants in patients with apparently isolated congenital leftâ€sided cardiac lesions reveals clinically relevant genomic events. American Journal of Medical Genetics, Part A, 2017, 173, 2176-2188.	1.2	17
57	Developmental origins for semilunar valve stenosis identified in mice harboring congenital heart disease-associated <i>GATA4</i> mutation. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	17
58	Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease. PLoS Genetics, 2021, 17, e1009679.	3.5	17
59	Decoding Genetics of Congenital Heart Disease Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Frontiers in Cell and Developmental Biology, 2021, 9, 630069.	3.7	17
60	Novel frameshift variant in MYL2 reveals molecular differences between dominant and recessive forms of hypertrophic cardiomyopathy. PLoS Genetics, 2020, 16, e1008639.	3.5	16
61	A Rare Human Sequence Variant Reveals Myocardin Autoinhibition. Journal of Biological Chemistry, 2008, 283, 35845-35852.	3.4	15
62	Impact of Mendelian inheritance in cardiovascular disease. Annals of the New York Academy of Sciences, 2010, 1214, 122-137.	3.8	13
63	Notch Signaling in Aortic Valve Development and Disease. , 2016, , 371-376.		13
			10
64	Compacting the heart with Notch. Nature Medicine, 2013, 19, 133-134.	30.7	10
		30.7	
64	Compacting the heart with Notch. Nature Medicine, 2013, 19, 133-134. Molecular genetic mechanisms of congenital heart disease. Current Opinion in Genetics and		10
64 65	Compacting the heart with Notch. Nature Medicine, 2013, 19, 133-134. Molecular genetic mechanisms of congenital heart disease. Current Opinion in Genetics and Development, 2022, 75, 101949. A common cis-acting sequence in the DiGeorge critical region regulates bi-directional transcription	3.3	10
64 65 66	Compacting the heart with Notch. Nature Medicine, 2013, 19, 133-134. Molecular genetic mechanisms of congenital heart disease. Current Opinion in Genetics and Development, 2022, 75, 101949. A common cis-acting sequence in the DiGeorge critical region regulates bi-directional transcription of UFD1L and CDC45L. Mechanisms of Development, 2001, 108, 81-92. Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene	3.3 1.7	10
64 65 66	Compacting the heart with Notch. Nature Medicine, 2013, 19, 133-134. Molecular genetic mechanisms of congenital heart disease. Current Opinion in Genetics and Development, 2022, 75, 101949. A common cis-acting sequence in the DiGeorge critical region regulates bi-directional transcription of UFD1L and CDC45L. Mechanisms of Development, 2001, 108, 81-92. Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene discovery. PLoS Genetics, 2022, 18, e1010236. Rationale for the Cytogenomics of Cardiovascular Malformations Consortium: A Phenotype Intensive	3.3 1.7 3.5	10 10 9
64 65 66 67 68	Compacting the heart with Notch. Nature Medicine, 2013, 19, 133-134. Molecular genetic mechanisms of congenital heart disease. Current Opinion in Genetics and Development, 2022, 75, 101949. A common cis-acting sequence in the DiGeorge critical region regulates bi-directional transcription of UFD1L and CDC45L. Mechanisms of Development, 2001, 108, 81-92. Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene discovery. PLoS Genetics, 2022, 18, e1010236. Rationale for the Cytogenomics of Cardiovascular Malformations Consortium: A Phenotype Intensive Registry Based Approach. Journal of Cardiovascular Development and Disease, 2015, 2, 76-92.	3.3 1.7 3.5	10 10 9 8 7
64 65 66 67 68	Compacting the heart with Notch. Nature Medicine, 2013, 19, 133-134. Molecular genetic mechanisms of congenital heart disease. Current Opinion in Genetics and Development, 2022, 75, 101949. A common cis-acting sequence in the DiGeorge critical region regulates bi-directional transcription of UFD1L and CDC45L. Mechanisms of Development, 2001, 108, 81-92. Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene discovery. PLoS Genetics, 2022, 18, e1010236. Rationale for the Cytogenomics of Cardiovascular Malformations Consortium: A Phenotype Intensive Registry Based Approach. Journal of Cardiovascular Development and Disease, 2015, 2, 76-92. Another Notch in the Genetic Puzzle of Tetralogy of Fallot. Circulation Research, 2019, 124, 462-464. Common deletion variants causing protocadherin-α deficiency contribute to the complex genetics of	3.3 1.7 3.5 1.6 4.5	10 10 9 8 7

#	Article	IF	CITATIONS
73	Abnormal Longitudinal Growth of the Aorta in Children with Familial Bicuspid Aortic Valve. Pediatric Cardiology, 2017, 38, 1709-1715.	1.3	4
74	Impact of maternal hyperglycemia on cardiac development: Insights from animal models. Genesis, 2021, 59, e23449.	1.6	4
75	Gender Differences in Physical Activity Engagement Among Adolescents With Congenital Heart Disease. Journal of Pediatric Psychology, 2022, 47, 859-869.	2.1	4
76	Single-Cell RNA Sequencing Reveals Novel Genes Regulated by Hypoxia in the Lung Vasculature. Journal of Vascular Research, 2022, 59, 163-175.	1.4	4
77	The Role of Lipoprotein(a) in Calcific Aortic Valve Disease. JAMA Cardiology, 2018, 3, 24.	6.1	3
78	Probing single ventricle heart defects with <scp>patientâ€derived</scp> induced pluripotent stem cells and emerging technologies. Birth Defects Research, 2022, , .	1.5	3
79	Use of machine learning to classify high-risk variants of uncertain significance in lamin A/C cardiac disease. Heart Rhythm, 2022, 19, 676-685.	0.7	3
80	Inhibition of BKCa channels protects neonatal hearts against myocardial ischemia and reperfusion injury. Cell Death Discovery, 2022, 8, 175.	4.7	3
81	A Multi-Omics Approach Using a Mouse Model of Cardiac Malformations for Prioritization of Human Congenital Heart Disease Contributing Genes. Frontiers in Cardiovascular Medicine, 2021, 8, 683074.	2.4	2
82	Molecular Basis of Cardiac Development and Congenital Heart Disease., 2012,, 317-339.		2
83	Beyond genetics: focusing on maternal environment for congenital heart disease prevention. Evidence-Based Medicine, 2014, 19, e8-e8.	0.6	1
84	Shaping the future heart: transgenerational outcomes of maternal metabolic syndrome. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1141-H1143.	3.2	1
85	miRâ€145 transgenic mice develop cardiopulmonary complications leading to postnatal death. Physiological Reports, 2021, 9, e15013.	1.7	1
86	A Randomized Clinical Trial Demonstrating Feasibility and Preliminary Efficacy of a Videoconference-Delivered Physical Activity Lifestyle Intervention Among Adolescents With a Congenital Heart Defect. Annals of Behavioral Medicine, 2021, , .	2.9	1
87	EXPRESSION PATTERNS OF BASONUCLIN 2 IN PENILE TISSUE. Journal of Urology, 2009, 181, 253-253.	0.4	O
88	UTILITY OF GENETIC TESTING IN INFANTS WITH ISOLATED CONGENITAL HEART DISEASE. Journal of the American College of Cardiology, 2017, 69, 635.	2.8	0
89	Dose-dependent effect of Hyperglycemia during Cardiac Development. Journal of Molecular and Cellular Cardiology, 2017, 112, 153.	1.9	0
90	Human Stem Cell Models of SARS-CoV-2 Infection in the Cardiovascular System. Stem Cell Reviews and Reports, 2021, 17, 2107-2119.	3.8	0

#	Article	IF	CITATIONS
91	Growth of the Normal Human Heart. , 2012, , 1305-1316.		O
92	Abstract 650: Dose-response Effect of Hyperglycemia in Maternal Diabetes Mediated Congenital Heart Defects. Circulation Research, 2019, 125, .	4.5	0
93	Abstract 436: Maternal Pregestational Diabetes Alters Fetal Gene Regulatory Program to Cause Spectrum of Congenital Heart Defects. Circulation Research, 2020, 127, .	4.5	O
94	Abstract 276: NOTCH1 is Essential for Ventricular Cardiomyocyte Differentiation of Human Induced Pluripotent Stem Cells. Circulation Research, 2020, 127, .	4.5	0
95	Genetic Underpinnings of Cardiogenesis and Congenital Heart Disease. , 2005, , 155-164.		O
96	Abstract 16552: Chromosomal Microarray Abnormalities in More Than 1300 Patients With Congenital Heart Disease Provide Novel Clinical and Etiological Insights. Circulation, 2020, 142, .	1.6	0