
Ping I Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4204629/publications.pdf Version: 2024-02-01

PINC LLEE

#	Article	IF	CITATIONS
1	A Mechanistic Model for Predicting the Physical Stability of Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2021, 110, 1495-1512.	3.3	6
2	On the usefulness of sink index in characterizing the degree of nonsinkness in dissolution studies. International Journal of Pharmaceutics, 2021, 605, 120845.	5.2	6
3	Elucidating the effect of crystallization on drug release from amorphous solid dispersions in soluble and insoluble carriers. International Journal of Pharmaceutics, 2020, 591, 120005.	5.2	18
4	Applications of Dynamic Mechanical Analysis in the Engineering of Amorphous Solid Dispersions. Pharmaceutical Fronts, 2020, 02, e55-e63.	0.8	3
5	Evolution of supersaturation from amorphous solid dispersions in water-insoluble polymer carriers: Effects of swelling capacity and interplay between partition and diffusion. International Journal of Pharmaceutics, 2020, 581, 119292.	5.2	15
6	Hepatic clearance concepts and misconceptions: Why the well-stirred model is still used even though it is not physiologic reality?. Biochemical Pharmacology, 2019, 169, 113596.	4.4	43
7	Impact of phase separation morphology on release mechanism of amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 2019, 136, 104955.	4.0	24
8	Enhanced delivery of fixed-dose combination of synergistic antichagasic agents posaconazole-benznidazole based on amorphous solid dispersions. European Journal of Pharmaceutical Sciences, 2018, 119, 208-218.	4.0	27
9	Solid dispersions to enhance the delivery of a potential drug candidate LPSF/FZ4 for the treatment of schistosomiasis. European Journal of Pharmaceutical Sciences, 2018, 115, 270-285.	4.0	11
10	Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels. Molecular Pharmaceutics, 2018, 15, 2017-2026.	4.6	35
11	Finding T _{max} and C _{max} in Multicompartmental Models. Drug Metabolism and Disposition, 2018, 46, 1796-1804.	3.3	10
12	Enhancement of dissolution rate through eutectic mixture and solid solution of posaconazole and benznidazole. International Journal of Pharmaceutics, 2017, 525, 32-42.	5.2	59
13	Effect of Extent of Supersaturation on the Evolution of Kinetic Solubility Profiles. Molecular Pharmaceutics, 2017, 14, 206-220.	4.6	35
14	Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives. International Journal of Pharmaceutics, 2016, 505, 283-288.	5.2	106
15	Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. Journal of Controlled Release, 2015, 211, 85-93.	9.9	124
16	Evolution of Supersaturation of Amorphous Pharmaceuticals: Nonlinear Rate of Supersaturation Generation Regulated by Matrix Diffusion. Molecular Pharmaceutics, 2015, 12, 1203-1215.	4.6	44
17	Haste Makes Waste: The Interplay Between Dissolution and Precipitation of Supersaturating Formulations. AAPS Journal, 2015, 17, 1317-1326.	4.4	56
18	Crosslinked hydrogels—a promising class of insoluble solid molecular dispersion carriers for enhancing the delivery of poorly soluble drugs. Acta Pharmaceutica Sinica B, 2014, 4, 26-36.	12.0	33

Ping I Lee

#	Article	IF	CITATIONS
19	Evolution of Supersaturation of Amorphous Pharmaceuticals: The Effect of Rate of Supersaturation Generation. Molecular Pharmaceutics, 2013, 10, 4330-4346.	4.6	151
20	Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 149-158.	4.3	66
21	A rotating disk electrokinetic method for characterizing polyelectrolyte pharmaceutical gels. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 199-206.	4.3	1
22	Modeling of drug release from matrix systems involving moving boundaries: Approximate analytical solutions. International Journal of Pharmaceutics, 2011, 418, 18-27.	5.2	54
23	A new bioerodible system for sustained local drug delivery based on hydrolytically activated in situ macromolecular association. International Journal of Pharmaceutics, 2010, 383, 45-52.	5.2	15
24	Controlled Nitric Oxide Delivery Platform Based on <i>S</i> -Nitrosothiol Conjugated Interpolymer Complexes for Diabetic Wound Healing. Molecular Pharmaceutics, 2010, 7, 254-266.	4.6	87
25	Release mechanisms of a sparingly water-soluble drug from controlled porosity-osmotic pump pellets using sulfobutylether-β-cyclodextrin as both a solubilizing and osmotic agent. Journal of Pharmaceutical Sciences, 2009, 98, 1992-2000.	3.3	14
26	Solid molecular dispersions of poorly water-soluble drugs in poly(2-hydroxyethyl methacrylate) hydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65, 320-328.	4.3	56
27	A Potent, Covalent Inhibitor of Orotidine 5â€~-Monophosphate Decarboxylase with Antimalarial Activity. Journal of Medicinal Chemistry, 2007, 50, 915-921.	6.4	53
28	Effect of sample size on Case II diffusion of methanol in poly(methyl methacrylate) beads. Polymer, 2006, 47, 7726-7730.	3.8	12
29	Comments on "Modeling the controlled release of drug embedded in a plate-like polymer matrix―by Lin et al Chemical Engineering Science, 2005, 60, 7172-7173.	3.8	1
30	Preparation and characterization of inulin ester microspheres as drug carriers. Journal of Applied Polymer Science, 2000, 77, 833-840.	2.6	49
31	Enhanced and Retarded Drug Release from Hydrophobic Ionic Beads. Journal of Macromolecular Science - Pure and Applied Chemistry, 1996, 33, 1227-1238.	2.2	4
32	A new bioerodible polymer insert for the controlled release of metronidazole. Pharmaceutical Research, 1994, 11, 1605-1609.	3.5	44
33	Probing the mechanisms of drug release from hydroxypropylmethyl cellulose matrices. Pharmaceutical Research, 1994, 11, 1379-1384.	3.5	120
34	Poly(vinyl alcohol) membrane systems for the controlled release of chlorinated isocyanurates. Journal of Applied Polymer Science, 1993, 50, 941-947.	2.6	5
35	Constant-Rate Drug Release from Novel Anionic Gel Beads with Transient Composite Structure. Journal of Pharmaceutical Sciences, 1993, 82, 964-967.	3.3	5
36	Preparation and characterization of thermal- and pH-sensitive nanospheres. Pharmaceutical Research, 1993, 10, 1544-1547.	3.5	50

PING I LEE

#	Article	IF	CITATIONS
37	Swelling and dissolution kinetics during peptide release from erodible anionic gel beads. Pharmaceutical Research, 1993, 10, 980-985.	3.5	22
38	Programmable drug delivery from an erodible association polymer system. Pharmaceutical Research, 1993, 10, 1144-1152.	3.5	36
39	Temperature dependence of methanol transport in spherical PMMA beads. Polymer, 1993, 34, 2397-2400.	3.8	10
40	Swelling-induced zero-order release from rubbery polydimethylsiloxane beads. Journal of Controlled Release, 1992, 18, 19-24.	9.9	8
41	Sorption and transport of ethanol and water in poly(ethylene-co-vinyl acetate) membranes. Journal of Membrane Science, 1992, 69, 223-234.	8.2	8
42	Effect of geometry on solvent front penetration in glassy polymers. Journal of Membrane Science, 1992, 65, 77-92.	8.2	17
43	A comparative investigation of hepatic clearance models: Predictions of metabolite formation and elimination. Journal of Pharmacokinetics and Pharmacodynamics, 1992, 20, 105-145.	0.6	18
44	Effect of loading on swelling-controlled drug release from hydrophobic polyelectrolyte gel beads. Pharmaceutical Research, 1992, 09, 1268-1274.	3.5	21
45	Hydrophobic anionic gel beads for swelling-controlled drug delivery. Pharmaceutical Research, 1992, 09, 195-199.	3.5	26
46	Composite poly(vinyl alcohol) beads for controlled drug delivery. Pharmaceutical Research, 1992, 09, 10-16.	3.5	50
47	Synthesis and characterization of suspension-polymerized poly(vinyl alcohol) beads with core–shell structure. Journal of Applied Polymer Science, 1992, 46, 2147-2157.	2.6	18
48	Probing the mechanisms of drug release from hydrogels. Journal of Controlled Release, 1991, 16, 229-236.	9.9	119
49	Swelling effect of semicrystalline poly(vinyl alcohol) in hydrogen peroxide. Journal of Applied Polymer Science, 1991, 42, 3077-3082.	2.6	10
50	Swelling-controlled release, swelling/erosion mechanisms, and front synchronization: comments on the paper by Devi et al. Pharmaceutical Research, 1990, 07, 431-432.	3.5	2
51	Comment on a paper by Hurung-Rern Lee, Tsai-An Yu, and Yu-Der Lee. Macromolecules, 1990, 23, 3868-3868.	4.8	16
52	pH-dependent swelling and solute diffusion characteristics of poly(hydroxyethyl) Tj ETQq0 0 0 rgBT /Overlock 1	0 Tf <u>50</u> 14	2 Td (methacr 126
53	Prediction of polymer dissolution in swellable controlled-release systems. Journal of Controlled Release, 1987, 6, 207-215.	9.9	167

Ping I Lee

#	Article	IF	CITATIONS
55	Initial concentration distribution as a mechanism for regulating drug release from diffusion controlled and surface erosion controlled matrix systems. Journal of Controlled Release, 1986, 4, 1-7.	9.9	79
56	Kinetics of drug release from hydrogel matrices. Journal of Controlled Release, 1985, 2, 277-288.	9.9	338
57	Kinetics of Drug Release from Glassy Polymers: Effect of Initially Nonuniform Drug Distribution. , 1985, , 79-85.		1
58	Effect of non-uniform initial drug concentration distribution on the kinetics of drug release from glassy hydrogel matrices. Polymer, 1984, 25, 973-978.	3.8	102
59	Novel Approach to Zero-order Drug Delivery Via Immobilized Nonuniform Drug Distribution in Glassy Hydrogels. Journal of Pharmaceutical Sciences, 1984, 73, 1344-1347.	3.3	111