## Luis Gabriel Navar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4204608/publications.pdf Version: 2024-02-01



LUIS CARDIEL NAVAD

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Regulation of Intrarenal Angiotensin II in Hypertension. Hypertension, 2002, 39, 316-322.                                                                                                            | 2.7 | 344       |
| 2  | Enhancement of Intrarenal Angiotensinogen in Dahl Salt-Sensitive Rats on High Salt Diet.<br>Hypertension, 2003, 41, 592-597.                                                                         | 2.7 | 239       |
| 3  | Urinary Angiotensinogen as an Indicator of Intrarenal Angiotensin Status in Hypertension.<br>Hypertension, 2003, 41, 42-49.                                                                          | 2.7 | 225       |
| 4  | Expression of Angiotensinogen mRNA and Protein in Angiotensin II-Dependent Hypertension. Journal of the American Society of Nephrology: JASN, 2001, 12, 431-439.                                     | 6.1 | 219       |
| 5  | Enhancement of Collecting Duct Renin in Angiotensin Il–Dependent Hypertensive Rats. Hypertension,<br>2004, 44, 223-229.                                                                              | 2.7 | 210       |
| 6  | Intratubular Renin-Angiotensin System in Hypertension. Hypertension, 2011, 57, 355-362.                                                                                                              | 2.7 | 199       |
| 7  | Urinary Angiotensinogen as a Novel Biomarker of the Intrarenal Renin-Angiotensin System Status in<br>Hypertensive Patients. Hypertension, 2009, 53, 344-350.                                         | 2.7 | 188       |
| 8  | Enhancement of Angiotensinogen Expression in Angiotensin Il–Dependent Hypertension. Hypertension,<br>2001, 37, 1329-1335.                                                                            | 2.7 | 178       |
| 9  | Receptor-Mediated Intrarenal Angiotensin II Augmentation in Angiotensin II–Infused Rats.<br>Hypertension, 1996, 28, 669-677.                                                                         | 2.7 | 165       |
| 10 | Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Current<br>Opinion in Pharmacology, 2011, 11, 180-186.                                                        | 3.5 | 149       |
| 11 | AT <sub>1</sub> receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent<br>hypertensive rats. American Journal of Physiology - Renal Physiology, 2005, 289, F632-F637.    | 2.7 | 122       |
| 12 | Absence of glomerular injury or nephron loss in a normotensive rat remnant kidney model. Kidney<br>International, 1990, 38, 28-38.                                                                   | 5.2 | 120       |
| 13 | Inflammation as a Regulator of the Renin-Angiotensin System and Blood Pressure. Current<br>Hypertension Reports, 2018, 20, 100.                                                                      | 3.5 | 119       |
| 14 | Proximal Tubular Angiotensin II Levels and Renal Functional Responses to AT <sub>1</sub> Receptor<br>Blockade in Nonclipped Kidneys of Goldblatt Hypertensive Rats. Hypertension, 1999, 33, 102-107. | 2.7 | 105       |
| 15 | Kidney-specific enhancement of ANG II stimulates endogenous intrarenal angiotensinogen in<br>gene-targeted mice. American Journal of Physiology - Renal Physiology, 2007, 293, F938-F945.            | 2.7 | 103       |
| 16 | Collecting Duct Renin Is Upregulated in Both Kidneys of 2-Kidney, 1-Clip Goldblatt Hypertensive Rats.<br>Hypertension, 2008, 51, 1590-1596.                                                          | 2.7 | 103       |
| 17 | Renal Accumulation of Circulating Angiotensin II in Angiotensin II–Infused Rats. Hypertension, 1996, 27,<br>658-662.                                                                                 | 2.7 | 100       |
| 18 | Impairment of pressure-natriuresis and renal autoregulation in ANG II-infused hypertensive rats.<br>American Journal of Physiology - Renal Physiology, 2000, 279, F319-F325.                         | 2.7 | 97        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Why are angiotensin concentrations so high in the kidney?. Current Opinion in Nephrology and Hypertension, 2004, 13, 107-115.                                                                                              | 2.0 | 96        |
| 20 | Canagliflozin Prevents Intrarenal Angiotensinogen Augmentation and Mitigates Kidney Injury and<br>Hypertension in Mouse Model of Type 2 Diabetes Mellitus. American Journal of Nephrology, 2019, 49,<br>331-342.           | 3.1 | 95        |
| 21 | Regulation of Angiotensin II Type 1 Receptor mRNA and Protein in Angiotensin II–Induced Hypertension.<br>Hypertension, 1999, 33, 340-346.                                                                                  | 2.7 | 89        |
| 22 | Relation Between Renal Interstitial ATP Concentrations and Autoregulation-Mediated Changes in Renal Vascular Resistance. Circulation Research, 2000, 86, 656-662.                                                          | 4.5 | 89        |
| 23 | Intrarenal angiotensin II and hypertension. Current Hypertension Reports, 2003, 5, 135-143.                                                                                                                                | 3.5 | 84        |
| 24 | Extracellular ATP in the regulation of renal microvascular function 1. FASEB Journal, 1994, 8, 319-318.                                                                                                                    | 0.5 | 80        |
| 25 | Neuronal nitric oxide synthase modulates rat renal microvascular function. American Journal of<br>Physiology - Renal Physiology, 1998, 274, F516-F524.                                                                     | 2.7 | 79        |
| 26 | The intrarenal renin-angiotensin system in hypertension. Kidney International, 2004, 65, 1522-1532.                                                                                                                        | 5.2 | 78        |
| 27 | Interactions of adenosine A <sub>1</sub> and A <sub>2a</sub> receptors on renal microvascular reactivity. American Journal of Physiology - Renal Physiology, 2001, 280, F406-F414.                                         | 2.7 | 75        |
| 28 | THE KIDNEY IN BLOOD PRESSURE REGULATION AND DEVELOPMENT OF HYPERTENSION. Medical Clinics of North America, 1997, 81, 1165-1198.                                                                                            | 2.5 | 73        |
| 29 | Unraveling the Mystery of Goldblatt Hypertension. Physiology, 1998, 13, 170-176.                                                                                                                                           | 3.1 | 71        |
| 30 | Dynamic interaction between myogenic and TGF mechanisms in afferent arteriolar blood flow autoregulation. American Journal of Physiology - Renal Physiology, 2000, 279, F858-F865.                                         | 2.7 | 70        |
| 31 | AT <sub>1</sub> receptor-mediated augmentation of angiotensinogen, oxidative stress, and<br>inflammation in ANG II-salt hypertension. American Journal of Physiology - Renal Physiology, 2012, 302,<br>F85-F94.            | 2.7 | 70        |
| 32 | Angiotensin II Stimulates Renin in Inner Medullary Collecting Duct Cells via Protein Kinase C and<br>Independent of Epithelial Sodium Channel and Mineralocorticoid Receptor Activity. Hypertension, 2011,<br>57, 594-599. | 2.7 | 69        |
| 33 | Urinary angiotensinogen is correlated with blood pressure in men (Bogalusa Heart Study). Journal of<br>Hypertension, 2010, 28, 1422-1428.                                                                                  | 0.5 | 68        |
| 34 | Microvascular reactivity of in vitro blood perfused juxtamedullary nephrons from rats. Kidney<br>International, 1985, 28, 752-759.                                                                                         | 5.2 | 64        |
| 35 | Interferonâ€Î³ biphasically regulates angiotensinogen expression <i>via</i> a JAKâ€STAT pathway and suppressor of cytokine signaling 1 (SOCS1) in renal proximal tubular cells. FASEB Journal, 2012, 26, 1821-1830.        | 0.5 | 63        |
| 36 | Increased urinary excretion of angiotensinogen is associated with risk of chronic kidney disease.<br>Nephrology Dialysis Transplantation, 2012, 27, 3176-3181.                                                             | 0.7 | 63        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Intrarenal renin–angiotensin system in regulation of glomerular function. Current Opinion in<br>Nephrology and Hypertension, 2014, 23, 38-45.                                                                              | 2.0 | 63        |
| 38 | Costimulation with angiotensin II and interleukin 6 augments angiotensinogen expression in cultured<br>human renal proximal tubular cells. American Journal of Physiology - Renal Physiology, 2008, 295,<br>F283-F289.     | 2.7 | 62        |
| 39 | Intrarenal mouse renin-angiotensin system during ANG II-induced hypertension and ACE inhibition.<br>American Journal of Physiology - Renal Physiology, 2010, 298, F150-F157.                                               | 2.7 | 62        |
| 40 | Chronic Angiotensin II Infusion Drives Extensive Aldosterone-Independent Epithelial Na <sup>+</sup><br>Channel Activation. Hypertension, 2013, 62, 1111-1122.                                                              | 2.7 | 61        |
| 41 | Genetic disruption of atrial natriuretic peptide receptor-A alters renin and angiotensin II levels.<br>American Journal of Physiology - Renal Physiology, 2001, 281, F665-F673.                                            | 2.7 | 59        |
| 42 | Cyclooxygenase-2 Modulates Afferent Arteriolar Responses to Increases in Pressure. Hypertension, 1999, 34, 843-847.                                                                                                        | 2.7 | 58        |
| 43 | Proximal tubular fluid angiotensin II levels in angiotensin II-induced hypertensive rats. Journal of<br>Hypertension, 2003, 21, 353-360.                                                                                   | 0.5 | 58        |
| 44 | Intrarenal Nitric Oxide Activity and Pressure Natriuresis in Anesthetized Dogs. Hypertension, 1998, 32, 266-272.                                                                                                           | 2.7 | 57        |
| 45 | Renal Renin-Angiotensin System. , 2004, 143, 117-130.                                                                                                                                                                      |     | 57        |
| 46 | Review: Intrarenal angiotensin II levels in normal and hypertensive states. JRAAS - Journal of the<br>Renin-Angiotensin-Aldosterone System, 2001, 2, S176-S184.                                                            | 1.7 | 56        |
| 47 | Augmentation of endogenous intrarenal angiotensin II levels in Val <sup>5</sup> -ANG II-infused rats.<br>American Journal of Physiology - Renal Physiology, 2009, 296, F1067-F1071.                                        | 2.7 | 55        |
| 48 | Increased renin excretion is associated with augmented urinary angiotensin II levels in chronic<br>angiotensin II-infused hypertensive rats. American Journal of Physiology - Renal Physiology, 2011, 301,<br>F1195-F1201. | 2.7 | 55        |
| 49 | Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms. Current Hypertension Reviews, 2015, 11, 38-48.                                                                                                         | 0.9 | 53        |
| 50 | Role of Renal Nerves in Afferent Arteriolar Reactivity in Angiotensin-Induced Hypertension.<br>Hypertension, 1997, 29, 442-449.                                                                                            | 2.7 | 52        |
| 51 | Cyclooxygenase-2 participates in tubular flow-dependent afferent arteriolar tone: interaction with neuronal NOS. American Journal of Physiology - Renal Physiology, 1998, 275, F605-F612.                                  | 2.7 | 52        |
| 52 | Integrating multiple paracrine regulators of renal microvascular dynamics. American Journal of<br>Physiology - Renal Physiology, 1998, 274, F433-F444.                                                                     | 2.7 | 51        |
| 53 | Renin, Angiotensinogen, and Kallikrein Gene Expression in Two-Kidney Goldblatt Hypertensive Rats.<br>American Journal of Hypertension, 1993, 6, 914-919.                                                                   | 2.0 | 48        |
| 54 | Activation of the renin-angiotensin system by a low-salt diet does not augment intratubular<br>angiotensinogen and angiotensin II in rats. American Journal of Physiology - Renal Physiology, 2013,<br>304, F505-F514.     | 2.7 | 47        |

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Renoprotective effects of nitric oxide in angiotensin II-induced hypertension in the rat. American<br>Journal of Physiology - Renal Physiology, 1998, 274, F876-F882.                                                          | 2.7  | 46        |
| 56 | Purinergic receptors contribute to early mesangial cell transformation and renal vessel hypertrophy<br>during angiotensin II-induced hypertension. American Journal of Physiology - Renal Physiology, 2008,<br>294, F161-F169. | 2.7  | 45        |
| 57 | Nebivolol-induced vasodilation of renal afferent arterioles involves β <sub>3</sub> -adrenergic<br>receptor and nitric oxide synthase activation. American Journal of Physiology - Renal Physiology, 2012,<br>303, F775-F782.  | 2.7  | 45        |
| 58 | Interactive Nitric Oxide–Angiotensin II Influences on Renal Microcirculation in Angiotensin<br>II–Induced Hypertension. Hypertension, 1998, 31, 1255-1260.                                                                     | 2.7  | 44        |
| 59 | High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity. American Journal of Physiology - Renal Physiology, 2010, 299, F656-F663.                                   | 2.7  | 40        |
| 60 | Nitric Oxide Dependency of Arterial Pressure–Induced Changes in Renal Interstitial Hydrostatic<br>Pressure in Dogs. Circulation Research, 2001, 88, 347-351.                                                                   | 4.5  | 39        |
| 61 | Neuronal NOS contributes to biphasic autoregulatory response during enhanced TGF activity.<br>American Journal of Physiology - Renal Physiology, 1999, 277, F113-F120.                                                         | 2.7  | 37        |
| 62 | Tumor necrosis factor-α suppresses angiotensinogen expression through formation of a p50/p50<br>homodimer in human renal proximal tubular cells. American Journal of Physiology - Cell Physiology,<br>2010, 299, C750-C759.    | 4.6  | 37        |
| 63 | Renal medullary cyclooxygenase-2 and (pro)renin receptor expression during angiotensin II-dependent<br>hypertension. American Journal of Physiology - Renal Physiology, 2014, 307, F962-F970.                                  | 2.7  | 33        |
| 64 | Dietary Protein Intake and the Glomerular Adaptations to Partial Nephrectomy in Dogs. Journal of Nutrition, 1991, 121, S125-S127.                                                                                              | 2.9  | 32        |
| 65 | Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats. American Journal of Physiology - Renal Physiology, 2011, 300, F1301-F1309.                                   | 2.7  | 32        |
| 66 | Pressure Natriuresis and Renal Medullary Blood Flow in Dogs. Hypertension, 1997, 29, 1051-1057.                                                                                                                                | 2.7  | 32        |
| 67 | Increased activity and expression of Ca <sup>2+</sup> -dependent NOS in renal cortex of ANG II-infused hypertensive rats. American Journal of Physiology - Renal Physiology, 1999, 277, F797-F804.                             | 2.7  | 30        |
| 68 | Blockade of sodium-glucose cotransporter 2 suppresses high glucose-induced angiotensinogen<br>augmentation in renal proximal tubular cells. American Journal of Physiology - Renal Physiology,<br>2020, 318, F67-F75.          | 2.7  | 30        |
| 69 | Effects of acute AT <sub>1</sub> receptor blockade by candesartan on arterial pressure and renal function in rats. American Journal of Physiology - Renal Physiology, 1998, 274, F940-F945.                                    | 2.7  | 28        |
| 70 | Neuronal Nitric Oxide Synthase-Dependent Afferent Arteriolar Function in Angiotensin II-Induced<br>Hypertension. Hypertension, 1999, 33, 462-466.                                                                              | 2.7  | 28        |
| 71 | Translational studies on augmentation of intratubular renin–angiotensin system in hypertension.<br>Kidney International Supplements, 2013, 3, 321-325.                                                                         | 14.2 | 28        |
| 72 | The evolving complexity of the collecting duct renin–angiotensin system in hypertension. Nature<br>Reviews Nephrology, 2021, 17, 481-492.                                                                                      | 9.6  | 28        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Renal interstitial fluid ATP responses to arterial pressure and tubuloglomerular feedback activation<br>during calcium channel blockade. American Journal of Physiology - Heart and Circulatory Physiology,<br>2006, 290, H772-H777.       | 3.2 | 27        |
| 74 | Vasopressin/V2 receptor stimulates renin synthesis in the collecting duct. American Journal of Physiology - Renal Physiology, 2016, 310, F284-F293.                                                                                        | 2.7 | 27        |
| 75 | EXTRACELLULAR ATP INCREASES CYTOSOLIC CALCIUM IN CULTURED RAT RENAL ARTERIAL SMOOTH MUSCLE CELLS. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 503-507.                                                                | 1.9 | 25        |
| 76 | 2-Methoxyestradiol Reduces Angiotensin II–Induced Hypertension and Renal Dysfunction in<br>Ovariectomized Female and Intact Male Mice. Hypertension, 2017, 69, 1104-1112.                                                                  | 2.7 | 25        |
| 77 | Physiopathological implications of P2X <sub>1</sub> and P2X <sub>7</sub> receptors in regulation of glomerular hemodynamics in angiotensin II-induced hypertension. American Journal of Physiology - Renal Physiology, 2017, 313, F9-F19.  | 2.7 | 24        |
| 78 | Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via<br>AT <sub>1a</sub> /MAPK/NF-DºB signaling pathways. American Journal of Physiology - Renal Physiology,<br>2016, 310, F1103-F1112.   | 2.7 | 23        |
| 79 | Defective Renal Angiotensin III and AT <sub>2</sub> Receptor Signaling in Prehypertensive<br>Spontaneously Hypertensive Rats. Journal of the American Heart Association, 2019, 8, e012016.                                                 | 3.7 | 23        |
| 80 | 6β-Hydroxytestosterone, a Cytochrome P450 1B1-Testosterone–Metabolite, Mediates Angiotensin<br>II–Induced Renal Dysfunction in Male Mice. Hypertension, 2016, 67, 916-926.                                                                 | 2.7 | 19        |
| 81 | Advanced Glycation End Products Stimulate Angiotensinogen Production in Renal Proximal Tubular<br>Cells. American Journal of the Medical Sciences, 2019, 357, 57-66.                                                                       | 1.1 | 18        |
| 82 | Inducible Nitric Oxide Synthase Attenuates Endothelium-Dependent Renal Microvascular Vasodilation.<br>Journal of the American Society of Nephrology: JASN, 2000, 11, 1807-1812.                                                            | 6.1 | 17        |
| 83 | The Role of P2X7 Purinergic Receptors in the Renal Inflammation Associated with Angiotensin<br>II-Induced Hypertension. International Journal of Molecular Sciences, 2020, 21, 4041.                                                       | 4.1 | 16        |
| 84 | PGE <sub>2</sub> upregulates renin through E-prostanoid receptor 1 via PKC/cAMP/CREB pathway in M-1<br>cells. American Journal of Physiology - Renal Physiology, 2017, 313, F1038-F1049.                                                   | 2.7 | 15        |
| 85 | ROCK/NF-κB axis-dependent augmentation of angiotensinogen by angiotensin II in primary-cultured preglomerular vascular smooth muscle cells. American Journal of Physiology - Renal Physiology, 2014, 306, F608-F618.                       | 2.7 | 14        |
| 86 | Increased angiotensinogen expression, urinary angiotensinogen excretion, and tissue injury in<br>nonclipped kidneys of two-kidney, one-clip hypertensive rats. American Journal of Physiology - Renal<br>Physiology, 2016, 311, F278-F290. | 2.7 | 13        |
| 87 | Modulating Role of Ang1-7 in Control of Blood Pressure and Renal Function in AngII-infused<br>Hypertensive Rats. American Journal of Hypertension, 2018, 31, 504-511.                                                                      | 2.0 | 13        |
| 88 | Urine angiotensinogen and salt-sensitivity and potassium-sensitivity of blood pressure. Journal of<br>Hypertension, 2015, 33, 1394-1400.                                                                                                   | 0.5 | 11        |
| 89 | The role of IL-6 in the physiologic versus hypertensive blood pressure actions of angiotensin II.<br>Physiological Reports, 2015, 3, e12595.                                                                                               | 1.7 | 10        |
| 90 | Romancing the macula densa at UAB. Kidney International, 2004, 66, S34-S40.                                                                                                                                                                | 5.2 | 9         |

| #   | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Effects of serelaxin on renal microcirculation in rats under control and high-angiotensin<br>environments. American Journal of Physiology - Renal Physiology, 2018, 314, F70-F80.                                                                                                               | 2.7 | 8         |
| 92  | Integration of purinergic and angiotensin II receptor function in renal vascular responses and renal injury in angiotensin II-dependent hypertension. Purinergic Signalling, 2019, 15, 277-285.                                                                                                 | 2.2 | 8         |
| 93  | Quantification of intact plasma AGT consisting of oxidized and reduced conformations using a modified ELISA. American Journal of Physiology - Renal Physiology, 2016, 311, F1211-F1216.                                                                                                         | 2.7 | 7         |
| 94  | The Regulation of Glomerular Filtration Rate in Mammalian Kidneys. , 1986, , 637-667.                                                                                                                                                                                                           |     | 7         |
| 95  | Purinergic P2X <sub>1</sub> receptor, purinergic P2X <sub>7</sub> receptor, and angiotensin II type 1 receptor interactions in the regulation of renal afferent arterioles in angiotensin II-dependent hypertension. American Journal of Physiology - Renal Physiology, 2020, 318, F1400-F1408. | 2.7 | 6         |
| 96  | Multi-Omics Approach Profiling Metabolic Remodeling in Early Systolic Dysfunction and in Overt<br>Systolic Heart Failure. International Journal of Molecular Sciences, 2022, 23, 235.                                                                                                           | 4.1 | 5         |
| 97  | Simulations of Clomerular Shear and Hoop Stresses in Diabetes, Hypertension, and Reduced Renal<br>Mass using a Network Model of a Rat Glomerulus. Physiological Reports, 2020, 8, e14577.                                                                                                       | 1.7 | 4         |
| 98  | Immunosuppression by Mycophenolate Mofetil Mitigates Intrarenal Angiotensinogen Augmentation in<br>Angiotensin II-Dependent Hypertension. International Journal of Molecular Sciences, 2022, 23, 7680.                                                                                          | 4.1 | 4         |
| 99  | Simulations of increased glomerular capillary wall strain in the 5/6â€nephrectomized rat.<br>Microcirculation, 2021, 28, e12721.                                                                                                                                                                | 1.8 | 3         |
| 100 | Angiotensin Ilâ€induced renal angiotensinogen formation is enhanced in mice lacking tumor necrosis<br>factorâ€alpha type 1 receptor. Physiological Reports, 2021, 9, e14990.                                                                                                                    | 1.7 | 3         |
| 101 | A Rat Model of Pressure Overload Induced Moderate Remodeling and Systolic Dysfunction as Opposed to Overt Systolic Heart Failure. Journal of Visualized Experiments, 2020, , .                                                                                                                  | 0.3 | 2         |
| 102 | Exercise-Induced Modulation of Angiotensin II Responses in Femoral Veins From 2-Kidney-1-Clip<br>Hypertensive Rats. Frontiers in Physiology, 2021, 12, 620438.                                                                                                                                  | 2.8 | 1         |
| 103 | Last Word on Counterpoint: Activation of the intrarenal renin-angiotensin system is the dominant contributor to systemic hypertension. Journal of Applied Physiology, 2010, 109, 2015-2015.                                                                                                     | 2.5 | 1         |
| 104 | High salt intake exacerbates renal tissue oxidative stress and urinary angiotensinogen excretion<br>during Angllâ€dependent hypertension FASEB Journal, 2010, 24, 1059.16.                                                                                                                      | 0.5 | 1         |
| 105 | Blood pressure independent sexual dimorphism in proteinuric response to high salt intake in<br>Spragueâ€Đawley rats FASEB Journal, 2010, 24, .                                                                                                                                                  | 0.5 | 1         |
| 106 | High salt induced augmentation of angiotensin II mediated hypertension is associated with differential expression of tumor necrosis factor-alpha receptors in the kidney. Exploration of Medicine, 0, , 205-218.                                                                                | 1.5 | 1         |
| 107 | The 60th Annual Fall Conference and Scientific Sessions of the Council for High Blood Pressure<br>Research in association with the Council on the Kidney in Cardiovascular Disease. Hypertension, 2007,<br>49, 585-586.                                                                         | 2.7 | 0         |
| 108 | 2016 Young Investigator Award of the American Physiological Society Renal Section. American Journal<br>of Physiology - Renal Physiology, 2016, 310, F805-F806.                                                                                                                                  | 2.7 | 0         |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Why until just now? Undiscovered uniqueness of the human glomerulus!. American Journal of<br>Physiology - Renal Physiology, 2018, 315, F1345-F1346.                                   | 2.7 | 0         |
| 110 | Edward D. Frohlich, MD. Hypertension, 2019, 74, 1229-1231.                                                                                                                            | 2.7 | 0         |
| 111 | A Novel Model of Renal Autoregulation Demonstrates Dynamic Modulatory Interactions between TGF<br>and Myogenic Mechanisms. FASEB Journal, 2021, 35, .                                 | 0.5 | 0         |
| 112 | Acute heme oxygenase inhibition does not alter afferent arteriolar responses to angiotensin II or increases in perfusion pressure in normal kidneys. FASEB Journal, 2007, 21, A844.   | 0.5 | 0         |
| 113 | The effects of nonâ€pressor and pressor doses of nitric oxide synthase inhibitor on renal excretion and regional blood flow in rat kidneys. FASEB Journal, 2008, 22, 749.12.          | 0.5 | 0         |
| 114 | Intrarenal RAS expression during Ang IIâ€infusions and ACE inhibition. FASEB Journal, 2009, 23, 606.11.                                                                               | 0.5 | 0         |
| 115 | High Salt Exacerbates Proteinuria in Chronic Angiotensinâ€II Infused Rats FASEB Journal, 2009, 23, 1016.1.                                                                            | 0.5 | Ο         |
| 116 | Kidney Injury Response to Elevated Blood Pressure vs Increased Intrarenal Ang II in 2K1C Goldblatt<br>Hypertensive Rats. FASEB Journal, 2009, 23, 626.21.                             | 0.5 | 0         |
| 117 | Kidney microRNA expression profile in Ang IIâ€dependent Hypertension. FASEB Journal, 2010, 24, 605.13.                                                                                | 0.5 | Ο         |
| 118 | Increased Urinary Renin Excretion Rate in Chronic Ang IIâ€infused Rats Fed a High Salt Diet leads to<br>augmented urinary Ang II levels FASEB Journal, 2010, 24, 605.16.              | 0.5 | 0         |
| 119 | AT1 receptorâ€mediated augmentation of urinary excretion of endogenous Ang II in Val5â€Ang II infused<br>rats. FASEB Journal, 2010, 24, 605.11.                                       | 0.5 | Ο         |
| 120 | Urinary Renin Excretion is augmented in Chronic Angiotensin IIâ€infused Spragueâ€Dawley Hypertensive<br>Rats. FASEB Journal, 2010, 24, 786.18.                                        | 0.5 | 0         |
| 121 | Soluble guanylyl cyclase inhibition prevents nebivololâ€induced vasodilation in renal afferent<br>arterioles. FASEB Journal, 2011, 25, .                                              | 0.5 | 0         |
| 122 | The Sodiumâ€Activated Sodium Channel (Nax) present in kidney thick ascending limb and collecting duct cells is augmented during high salt intake. FASEB Journal, 2011, 25, 1039.30.   | 0.5 | 0         |
| 123 | Collecting Duct Renin Synthesis and Secretion are Stimulated by Angiotensin (Ang) II via Protein Kinase<br>C (PKC) Activation and cAMP Accumulation. FASEB Journal, 2012, 26, 1103.3. | 0.5 | 0         |
| 124 | Physiological activation of Renalâ€Angiotensin System (RAS) by low salt diet does not cause kidney<br>injury. FASEB Journal, 2012, 26, lb817.                                         | 0.5 | 0         |
| 125 | Dissociation of vascular and natriuretic Ang1–7 actions in AngII hypertensive and normotensive rats.<br>FASEB Journal, 2013, 27, 909.11.                                              | 0.5 | 0         |
| 126 | Glomerular Capillary Hypertrophy in the Diabetic Rat Normalizes Wall Shear Stress: A Modeling Study.<br>FASEB Journal, 2019, 33, 748.13.                                              | 0.5 | 0         |

| #   | Article                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Sex Differences in Urinary Angiotensinogen (uAGT) Excretion, Renal Function, and Systolic Blood<br>Pressure in 2â€Kidney, 1â€Clip Hypertensive Rats. FASEB Journal, 2020, 34, 1-1. | 0.5 | 0         |