
Jason Gorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4203620/publications.pdf Version: 2024-02-01

LASON CORMAN

#	Article	IF	CITATIONS
1	A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nature Medicine, 2022, 28, 373-382.	30.7	16
2	Development of Neutralization Breadth against Diverse HIVâ€1 by Increasing Ab–Ag Interface on V2. Advanced Science, 2022, , 2200063.	11.2	3
3	Antigenic analysis of the HIV-1 envelope trimer implies small differences between structural states 1 and 2. Journal of Biological Chemistry, 2022, 298, 101819.	3.4	9
4	Structure of an influenza group 2-neutralizing antibody targeting the hemagglutinin stem supersite. Structure, 2022, , .	3.3	1
5	Tyrosine O-sulfation proteoforms affect HIV-1 monoclonal antibody potency. Scientific Reports, 2022, 12, 8433.	3.3	8
6	Highly protective antimalarial antibodies via precision library generation and yeast display screening. Journal of Experimental Medicine, 2022, 219, .	8.5	9
7	Broad coverage of neutralization-resistant SIV strains by second-generation SIV-specific antibodies targeting the region involved in binding CD4. PLoS Pathogens, 2022, 18, e1010574.	4.7	6
8	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
9	A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. MAbs, 2021, 13, 1946918.	5.2	11
10	Anti-V2 antibodies virus vulnerability revealed by envelope V1 deletion in HIV vaccine candidates. IScience, 2021, 24, 102047.	4.1	16
11	Structural basis of malaria RIFIN binding by LILRB1-containing antibodies. Nature, 2021, 592, 639-643.	27.8	8
12	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	11.0	444
13	Sequence-Signature Optimization Enables Improved Identification of Human HV6-1-Derived Class Antibodies That Neutralize Diverse Influenza A Viruses. Frontiers in Immunology, 2021, 12, 662909.	4.8	Ο
14	Structural basis of LAIR1 targeting by polymorphic Plasmodium RIFINs. Nature Communications, 2021, 12, 4226.	12.8	1
15	Interprotomer disulfide-stabilized variants of the human metapneumovirus fusion glycoprotein induce high titer-neutralizing responses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
16	Extended antibody-framework-to-antigen distance observed exclusively with broad HIV-1-neutralizing antibodies recognizing glycan-dense surfaces. Nature Communications, 2021, 12, 6470.	12.8	3
17	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. Cell Reports, 2020, 33, 108322.	6.4	59
18	Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host and Microbe, 2020, 28, 867-879.e5.	11.0	316

JASON GORMAN

#	Article	IF	CITATIONS
19	Real-Time Conformational Dynamics of SARS-CoV-2 Spikes on Virus Particles. Cell Host and Microbe, 2020, 28, 880-891.e8.	11.0	153
20	Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, 584, 450-456.	27.8	1,337
21	Disulfide stabilization of human norovirus GI.1 virus-like particles focuses immune response toward blockade epitopes. Npj Vaccines, 2020, 5, 110.	6.0	6
22	Subnanometer structures of HIV-1 envelope trimers on aldrithiol-2-inactivated virus particles. Nature Structural and Molecular Biology, 2020, 27, 726-734.	8.2	55
23	Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Reports, 2020, 31, 107488.	6.4	53
24	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	28.9	106
25	Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathogens, 2019, 15, e1008005.	4.7	6
26	Blocking α ₄ β ₇ integrin binding to SIV does not improve virologic control. Science, 2019, 365, 1033-1036.	12.6	31
27	Isolation and Structure of an Antibody that Fully Neutralizes Isolate SIVmac239 Reveals Functional Similarity of SIV and HIV Glycan Shields. Immunity, 2019, 51, 724-734.e4.	14.3	13
28	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	14.3	77
29	Associating HIV-1 envelope glycoprotein structures with states on theÂvirus observed by smFRET. Nature, 2019, 568, 415-419.	27.8	156
30	Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathogens, 2019, 15, e1007632.	4.7	20
31	Sequencing HIV-neutralizing antibody exons and introns reveals detailed aspects of lineage maturation. Nature Communications, 2018, 9, 4136.	12.8	11
32	Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to î±4î²7. PLoS Pathogens, 2018, 14, e1007278.	4.7	29
33	HIV-1 Env trimer opens through an asymmetric intermediate in which individual protomers adopt distinct conformations. ELife, 2018, 7, .	6.0	127
34	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	30.7	256
35	Interdomain Stabilization Impairs CD4 Binding and Improves Immunogenicity of the HIV-1 Envelope Trimer. Cell Host and Microbe, 2018, 23, 832-844.e6.	11.0	43
36	Ontogenyâ€based immunogens for the induction of V2â€directed <scp>HIV</scp> broadly neutralizing antibodies. Immunological Reviews, 2017, 275, 217-229.	6.0	27

JASON GORMAN

#	Article	IF	CITATIONS
37	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	3.4	81
38	Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop. Immunity, 2017, 46, 777-791.e10.	14.3	81
39	Single-Molecule FRET Delineates Asymmetric Trimer Conformations during HIV-1 Entry. Biophysical Journal, 2017, 112, 177a.	0.5	3
40	Conformational Changes in HIV-1 Env Trimer Induced by a Single CD4 as Revealed by Cryo-EM. Microscopy and Microanalysis, 2017, 23, 1190-1191.	0.4	0
41	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	4.7	33
42	Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathogens, 2016, 12, e1005537.	4.7	51
43	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
44	Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site. Journal of Virology, 2016, 90, 10220-10235.	3.4	32
45	Somatic Hypermutation-Induced Changes in the Structure and Dynamics of HIV-1 Broadly Neutralizing Antibodies. Structure, 2016, 24, 1346-1357.	3.3	35
46	Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3413-22.	7.1	170
47	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	8.2	162
48	New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency. Journal of Virology, 2016, 90, 76-91.	3.4	205
49	Single-Chain Soluble BG505.SOSIP gp140 Trimers as Structural and Antigenic Mimics of Mature Closed HIV-1 Env. Journal of Virology, 2015, 89, 5318-5329.	3.4	125
50	Conformational Dynamics of Single HIV-1 Envelope Proteins on the Surface of Native Virions. Biophysical Journal, 2015, 108, 362a-363a.	0.5	0
51	AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature, 2015, 519, 87-91.	27.8	265
52	Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.	8.2	333
53	Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nature Medicine, 2015, 21, 1332-1336.	30.7	215
54	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	27.8	681

JASON GORMAN

#	Article	IF	CITATIONS
55	Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science, 2014, 346, 759-763.	12.6	439
56	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	27.8	702
57	Transplanting Supersites of HIV-1 Vulnerability. PLoS ONE, 2014, 9, e99881.	2.5	51
58	The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nature Structural and Molecular Biology, 2013, 20, 174-181.	8.2	110
59	Vaccine Induction of Antibodies against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2. Immunity, 2013, 38, 176-186.	14.3	374
60	Target search dynamics during post-replicative mismatch repair. Cell Cycle, 2013, 12, 537-538.	2.6	2
61	N332-Directed Broadly Neutralizing Antibodies Use Diverse Modes of HIV-1 Recognition: Inferences from Heavy-Light Chain Complementation of Function. PLoS ONE, 2013, 8, e55701.	2.5	38
62	A Short Segment of the HIV-1 gp120 V1/V2 Region Is a Major Determinant of Resistance to V1/V2 Neutralizing Antibodies. Journal of Virology, 2012, 86, 8319-8323.	3.4	76
63	Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3074-83.	7.1	156
64	Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature, 2011, 480, 336-343.	27.8	794
65	Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nature Structural and Molecular Biology, 2010, 17, 932-938.	8.2	175
66	Nanofabricated Racks of Aligned and Anchored DNA Substrates for Single-Molecule Imaging. Langmuir, 2010, 26, 1372-1379.	3.5	62
67	DNA Curtains for High-Throughput Single-Molecule Optical Imaging. Methods in Enzymology, 2010, 472, 293-315.	1.0	116
68	Visualizing one-dimensional diffusion of proteins along DNA. Nature Structural and Molecular Biology, 2008, 15, 768-774.	8.2	247
69	Dynamic Basis for One-Dimensional DNA Scanning by the Mismatch Repair Complex Msh2-Msh6. Molecular Cell, 2007, 28, 359-370.	9.7	215
70	Crystal structures of the tryptophan repressor binding protein WrbA and complexes with flavin mononucleotide. Protein Science, 2005, 14, 3004-3012.	7.6	23
71	Structure ofEscherichia coliYfdW, a type III CoA transferase. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 507-511.	2.5	12
72	Structure of serine acetyltransferase fromHaemophilus influenzaeRd. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1600-1605.	2.5	31

#	Article	IF	CITATIONS
73	Structure of Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. SSRN Electronic Journal, 0, , .	0.4	1