List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4203274/publications.pdf Version: 2024-02-01

		50244	30894
158	11,120	46	102
papers	citations	h-index	g-index
150	150	159	9289
159	159		
all docs	docs citations	times ranked	citing authors

FEI 7HANC

#	Article	IF	CITATIONS
1	The Promise of Perovskite Solar Cells. , 2022, , 388-404.		3
2	Bifunctional spiro-fluorene/heterocycle cored hole-transporting materials: Role of the heteroatom on the photovoltaic performance of perovskite solar cells. Chemical Engineering Journal, 2022, 431, 133371.	6.6	11
3	Transformation of Quasiâ€2D Perovskite into 3D Perovskite Using Formamidine Acetate Additive for Efficient Blue Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2105164.	7.8	26
4	In Situ Synthesized 2D Covalent Organic Framework Nanosheets Induce Growth of Highâ€Quality Perovskite Film for Efficient and Stable Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	29
5	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2022, 375, 71-76.	6.0	216
6	Incorporation of 2D Perovskite Systems into 3D Perovskite Solar Cells. , 2022, , 81-114.		0
7	Efficient and Stable Large Bandgap MAPbBr ₃ Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V. ACS Energy Letters, 2022, 7, 1112-1119.	8.8	21
8	Nanoscale Photoexcited Carrier Dynamics in Perovskites. Journal of Physical Chemistry Letters, 2022, 13, 2388-2395.	2.1	3
9	Beyond efficiency fever: Preventing lead leakage for perovskite solar cells. Matter, 2022, 5, 1137-1161.	5.0	32
10	Mixing Matters: Nanoscale Heterogeneity and Stability in Metal Halide Perovskite Solar Cells. ACS Energy Letters, 2022, 7, 471-480.	8.8	23
11	Recent Advances in Lead Chemisorption for Perovskite Solar Cells. Transactions of Tianjin University, 2022, 28, 341-357.	3.3	11
12	Zn ²⁺ -Doped Lead-Free CsMnCl ₃ Nanocrystals Enable Efficient Red Emission with a High Photoluminescence Quantum Yield. Journal of Physical Chemistry Letters, 2022, 13, 4688-4694.	2.1	18
13	Constructing Effective Hole Transport Channels in Crossâ€Linked Hole Transport Layer by Stacking Discotic Molecules for High Performance Deep Blue QLEDs. Advanced Science, 2022, 9, .	5.6	16
14	Impact of peripheral groups on pyrimidine acceptor-based HLCT materials for efficient deep blue OLED devices. Journal of Materials Chemistry C, 2022, 10, 9953-9960.	2.7	15
15	Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7, 642-651.	19.8	121
16	Surface engineering with oxidized Ti3C2Tx MXene enables efficient and stable p-i-n-structured CsPbI3 perovskite solar cells. Joule, 2022, 6, 1672-1688.	11.7	45
17	Polymer Hole Transport Material Functional Group Tuning for Improved Perovskite Solar Cell Performance. ACS Applied Energy Materials, 2022, 5, 8601-8610.	2.5	3
18	Hydrazinium cation mixed FAPbI3-based perovskite with 1D/3D hybrid dimension structure for efficient and stable solar cells. Chemical Engineering Journal, 2021, 403, 125724.	6.6	33

#	Article	IF	CITATIONS
19	Hollow TiO2 spheres as mesoporous layer for better efficiency and stability of perovskite solar cells. Journal of Alloys and Compounds, 2021, 866, 158079.	2.8	9
20	Breakthrough: Phase-Pure 2D Perovskite Films. Joule, 2021, 5, 14-15.	11.7	8
21	Efficient and Stable Graded CsPbI3â^'xBrx Perovskite Solar Cells and Submodules by Orthogonal Processable Spray Coating. Joule, 2021, 5, 481-494.	11.7	81
22	Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%. ACS Energy Letters, 2021, 6, 208-215.	8.8	67
23	Wide-Bandgap Metal Halide Perovskites for Tandem Solar Cells. ACS Energy Letters, 2021, 6, 232-248.	8.8	89
24	Effect of concomitant anti-solvent engineering on perovskite grain growth and its high efficiency solar cells. Science China Materials, 2021, 64, 267-276.	3.5	14
25	SMART Perovskite Growth: Enabling a Larger Range of Process Conditions. ACS Energy Letters, 2021, 6, 650-658.	8.8	14
26	Advances in SnO ₂ -based perovskite solar cells: from preparation to photovoltaic applications. Journal of Materials Chemistry A, 2021, 9, 19554-19588.	5.2	88
27	Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%. Journal of the American Chemical Society, 2021, 143, 3231-3237.	6.6	152
28	Surface lattice engineering through three-dimensional lead iodide perovskitoid for high-performance perovskite solar cells. CheM, 2021, 7, 774-785.	5.8	37
29	Study on Thermal Simulation of LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 Battery. Energy Technology, 2021, 9, 2000816.	1.8	1
30	High-performance methylammonium-free ideal-band-gap perovskite solar cells. Matter, 2021, 4, 1365-1376.	5.0	51
31	Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites. ACS Energy Letters, 2021, 6, 1942-1969.	8.8	76
32	Substrate-Controlled Electronic Properties of Perovskite Layer in Lateral Heterojunction Configuration. , 2021, , .		0
33	Linking Transient Voltage to Spatially-Resolved Luminescence Imaging to Understand Reliability of Perovskite Photovoltaics. , 2021, , .		2
34	Superior photo-carrier diffusion dynamics in organic-inorganic hybrid perovskites revealed by spatiotemporal conductivity imaging. Nature Communications, 2021, 12, 5009.	5.8	10
35	Tunable White Light-Emitting Devices Based on Unilaminar High-Efficiency Zn ²⁺ -Doped Blue CsPbBr ₃ Quantum Dots. Journal of Physical Chemistry Letters, 2021, 12, 8507-8512.	2.1	11
36	Polymer additive assisted crystallization of perovskite films for high-performance solar cells. Organic Electronics, 2021, 96, 106258.	1.4	13

#	Article	IF	CITATIONS
37	Mixed solvent atmosphere induces the surface termination state transition of perovskite to achieve matched energy level alignment. Chemical Engineering Journal, 2021, 424, 130508.	6.6	5
38	Inkjet-printed alloy-like cross-linked hole-transport layer for high-performance solution-processed green phosphorescent OLEDs. Journal of Materials Chemistry C, 2021, 9, 12712-12719.	2.7	16
39	Super Flexible Transparent Conducting Oxideâ€Free Organic–Inorganic Hybrid Perovskite Solar Cells with 19.01% Efficiency (Active Area = 1 cm ²). Solar Rrl, 2021, 5, 2100733.	3.1	10
40	On-device lead-absorbing tapes for sustainable perovskite solar cells. Nature Sustainability, 2021, 4, 1038-1041.	11.5	53
41	Polymer Hole Transport Materials for Perovskite Solar Cells via Buchwald–Hartwig Amination. ACS Applied Polymer Materials, 2021, 3, 5578-5587.	2.0	14
42	Identifying high-performance and durable methylammonium-free lead halide perovskites <i>via</i> high-throughput synthesis and characterization. Energy and Environmental Science, 2021, 14, 6638-6654.	15.6	20
43	Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science, 2021, , eabj2637.	6.0	2
44	Coherent interlayers expand perovskite opportunities. Joule, 2021, 5, 3076-3077.	11.7	2
45	Additive Engineering for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1902579.	10.2	477
46	Study on modifying the Li/MnO 2 battery by mixing with the carbon fluoride. Energy Storage, 2020, 2, e128.	2.3	3
47	Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 1319-1325.	2.7	39
48	Position effect of arylamine branches on pyrene-based dopant-free hole transport materials for efficient and stable perovskite solar cells. Chemical Engineering Journal, 2020, 387, 123965.	6.6	34
49	Individual Electron and Hole Mobilities in Lead-Halide Perovskites Revealed by Noncontact Methods. ACS Energy Letters, 2020, 5, 47-55.	8.8	37
50	Inhomogeneous Doping of Perovskite Materials by Dopants from Hole-Transport Layer. Matter, 2020, 2, 261-272.	5.0	38
51	Simple 9,10-dihydrophenanthrene based hole-transporting materials for efficient perovskite solar cells. Chemical Engineering Journal, 2020, 402, 126298.	6.6	12
52	Triazine-based OLEDs with simplified structure and high efficiency by solution-processed procedure. Journal of Materials Science: Materials in Electronics, 2020, 31, 19943-19949.	1.1	0
53	Hole transport layer-free deep-blue OLEDs with outstanding colour purity and high efficiency. Journal of Materials Chemistry C, 2020, 8, 9184-9188.	2.7	11
54	Characterizing the Efficiency of Perovskite Solar Cells and Light-Emitting Diodes. Joule, 2020, 4, 1206-1235.	11.7	53

#	Article	IF	CITATIONS
55	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2070065.	3.1	2
56	Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wideâ€Bandgap Perovskite Solar Cells Beyond 21%. Solar Rrl, 2020, 4, 2000082.	3.1	79
57	Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science, 2020, 368, 155-160.	6.0	420
58	Controllable and efficient hole-injection layers with molybdenum oxide units by solution-processed procedure for OLEDs. Organic Electronics, 2020, 85, 105868.	1.4	1
59	An analysis of carrier dynamics in methylammonium lead triiodide perovskite solar cells using cross correlation noise spectroscopy. Applied Physics Letters, 2020, 116, .	1.5	5
60	Advances in two-dimensional organic–inorganic hybrid perovskites. Energy and Environmental Science, 2020, 13, 1154-1186.	15.6	420
61	From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules. Advanced Energy Materials, 2020, 10, 1904054.	10.2	256
62	Enhanced efficiency and stability of organic light-emitting diodes via binary self-assembled monolayers of aromatic and aliphatic compounds on indium tin oxide. Organic Electronics, 2020, 84, 105752.	1.4	3
63	Electronic Coordination Effect of the Regulator on Perovskite Crystal Growth and Its High-Performance Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 19439-19446.	4.0	14
64	Improving the Performance of Blue Polymer Light-Emitting Diodes Using a Hole Injection Layer with a High Work Function and Nanotexture. ACS Applied Materials & Interfaces, 2020, 12, 20750-20756.	4.0	17
65	Blue emissive dimethylmethylene-bridged triphenylamine derivatives appending cross-linkable groups. Organic and Biomolecular Chemistry, 2020, 18, 3754-3760.	1.5	2
66	Carbazole-Based Hole-Transport Materials for High-Efficiency and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 4492-4498.	2.5	47
67	Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Advanced Materials, 2020, 32, e1907757.	11.1	303
68	On-device lead sequestration for perovskite solar cells. Nature, 2020, 578, 555-558.	13.7	284
69	Mitigating Measurement Artifacts in TOF-SIMS Analysis of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 30911-30918.	4.0	44
70	Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS. Joule, 2019, 3, 1734-1745.	11.7	227
71	Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1509-1518.	5.2	25
72	Enhanced Charge Transport by Incorporating Formamidinium and Cesium Cations into Twoâ€Dimensional Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 11737-11741.	7.2	67

#	Article	IF	CITATIONS
73	Enhanced Charge Transport by Incorporating Formamidinium and Cesium Cations into Twoâ€Dimensional Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 11863-11867.	1.6	22
74	Impact of 9â€(4â€methoxyphenyl) Carbazole and Benzodithiophene Cores on Performance and Stability for Perovskite Solar Cells Based on Dopantâ€Free Holeâ€Transporting Materials. Solar Rrl, 2019, 3, 1900202.	3.1	28
75	Regulation of peripheral tert-butyl position: Approaching efficient blue OLEDs based on solution-processable hole-transporting materials. Organic Electronics, 2019, 71, 85-92.	1.4	11
76	A low-cost thiophene-based hole transport material for efficient and stable perovskite solar cells. Organic Electronics, 2019, 71, 194-198.	1.4	10
77	Hole-transporting material based on spirobifluorene unit with perfect amorphous and high stability for efficient OLEDs. Journal of Materials Science: Materials in Electronics, 2019, 30, 11440-11450.	1.1	8
78	Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science, 2019, 364, 475-479.	6.0	781
79	Modification of ITO anodes with self-assembled monolayers for enhancing hole injection in OLEDs. Applied Physics Letters, 2019, 114, .	1.5	25
80	Self-Seeding Growth for Perovskite Solar Cells with Enhanced Stability. Joule, 2019, 3, 1452-1463.	11.7	120
81	Enhanced Charge Transport in 2D Perovskites via Fluorination of Organic Cation. Journal of the American Chemical Society, 2019, 141, 5972-5979.	6.6	274
82	Polymorph-induced photosensitivity change in titanylphthalocyanine revealed by the charge transfer integral. Nanophotonics, 2019, 8, 787-797.	2.9	7
83	Improving Charge Transport via Intermediate ontrolled Crystal Growth in 2D Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1901652.	7.8	103
84	Synthesis of a carbazole-substituted diphenylethylene hole transporting material and application in perovskite solar cells. IOP Conference Series: Materials Science and Engineering, 2019, 556, 012022.	0.3	1
85	Understanding Measurement Artifacts Causing Inherent Cation Gradients in Depth Profiles of Perovskite Photovoltaics with TOF-SIMS. , 2019, , .		2
86	Carbon Nanotube Bridging Method for Hole Transport Layer-Free Paintable Carbon-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 916-923.	4.0	77
87	Boosting the performance and stability of perovskite solar cells with phthalocyanine-based dopant-free hole transporting materials through core metal and peripheral groups engineering. Organic Electronics, 2019, 64, 71-78.	1.4	24
88	Suppressing defects through thiadiazole derivatives that modulate CH ₃ NH ₃ PbI ₃ crystal growth for highly stable perovskite solar cells under dark conditions. Journal of Materials Chemistry A, 2018, 6, 4971-4980.	5.2	95
89	Impact of Peripheral Groups on Phenothiazine-Based Hole-Transporting Materials for Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1145-1152.	8.8	125
90	Alcoholâ€Soluble Electronâ€Transport Materials for Fully Solutionâ€Processed Green PhOLEDs. Chemistry - an Asian Journal, 2018, 13, 1335-1341.	1.7	10

#	Article	IF	CITATIONS
91	Self-assembled monolayer-modified ITO for efficient organic light-emitting diodes: The impact of different self-assemble monolayers on interfacial and electroluminescent properties. Organic Electronics, 2018, 56, 89-95.	1.4	23
92	A Novel <i>trans</i> â€1â€(9â€Anthryl)â€2â€phenylethene Derivative Containing a Phenanthroimidazole Unit for Application in Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2018, 13, 81-88.	1.7	14
93	Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability. Organic Electronics, 2018, 53, 249-255.	1.4	35
94	Achieving highly efficient blue light-emitting polymers by incorporating a styrylarylene amine unit. Journal of Materials Chemistry C, 2018, 6, 12355-12363.	2.7	16
95	Suppressing defects through the synergistic effect of a Lewis base and a Lewis acid for highly efficient and stable perovskite solar cells. Energy and Environmental Science, 2018, 11, 3480-3490.	15.6	274
96	Organic Single-Crystalline p–n Heterojunctions for High-Performance Ambipolar Field-Effect Transistors and Broadband Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 42715-42722.	4.0	29
97	Boosting the Stability of Perovskite Solar Cells through a Dopantâ€Free Tetraphenylbenzidineâ€Based Hole Transporting Material. ChemistrySelect, 2018, 3, 13032-13037.	0.7	6
98	3D/2D multidimensional perovskites: Balance of high performance and stability for perovskite solar cells. Current Opinion in Electrochemistry, 2018, 11, 105-113.	2.5	59
99	Stability at Scale: Challenges of Module Interconnects for Perovskite Photovoltaics. ACS Energy Letters, 2018, 3, 2502-2503.	8.8	31
100	Scalable slot-die coating of high performance perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 2442-2449.	2.5	155
101	Enhanced stability and optoelectronic properties of MAPbI ₃ films by a cationic surface-active agent for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 10825-10834.	5.2	81
102	Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions with Ambipolar Bandâ€Like Charge Transport for Photovoltaics. Advanced Materials Interfaces, 2018, 5, 1800336.	1.9	18
103	Stable Perovskite Solar Cells based on Hydrophobic Triphenylamine Holeâ€Transport Materials. Energy Technology, 2017, 5, 312-320.	1.8	31
104	2,9,16,23-Tetrakis(7-coumarinoxy-4-methyl)- metallophthalocyanines -based hole transporting material for mixed-perovskite solar cells. Synthetic Metals, 2017, 226, 1-6.	2.1	20
105	lsomerâ€Pure Bisâ€PCBMâ€Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced Materials, 2017, 29, 1606806.	11.1	320
106	The modulation of opto-electronic properties of CH3NH3PbBr3 crystal. Journal of Materials Science: Materials in Electronics, 2017, 28, 11053-11058.	1.1	12
107	Simple dopant-free hole-transporting materials with p -ï€ conjugated structure for stable perovskite solar cells. Applied Surface Science, 2017, 416, 124-132.	3.1	15
108	Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air. Journal of Materials Chemistry A, 2017, 5, 13448-13456.	5.2	96

#	Article	IF	CITATIONS
109	Novel dopant-free metallophthalocyanines based hole transporting materials for perovskite solar cells: The effect of core metal on photovoltaic performance. Solar Energy, 2017, 155, 121-129.	2.9	40
110	The first transition metal phthalocyanines: sensitizing rubrene emission based on triplet–triplet annihilation. Photochemical and Photobiological Sciences, 2017, 16, 1384-1390.	1.6	9
111	Dopantâ€Free Holeâ€Transport Material with a Tetraphenylethene Core for Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1257-1264.	1.8	19
112	Morphology Engineering: A Route to Highly Reproducible and High Efficiency Perovskite Solar Cells. ChemSusChem, 2017, 10, 1624-1630.	3.6	46
113	A Novel Spiro[acridineâ€9,9′â€fluorene] Derivatives Containing Phenanthroimidazole Moiety for Deepâ€Blue OLED Application. Chemistry - an Asian Journal, 2017, 12, 3069-3076.	1.7	30
114	Dopant-free and low-cost molecular "bee―hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 11429-11435.	2.7	40
115	Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 2017, 41, 469-475.	8.2	232
116	Two trans-1-(9-anthryl)-2-phenylethene derivatives as blue-green emitting materials for highly bright organic light-emitting diodes application. Organic Electronics, 2017, 50, 228-238.	1.4	11
117	Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells. Dyes and Pigments, 2017, 136, 273-277.	2.0	83
118	Efficient, Stable, Dopantâ€Free Holeâ€Transport Material with a Triphenylamine Core for CH ₃ NH ₃ PbI ₃ Perovskite Solar Cells. Energy Technology, 2017, 5, 1173-1178.	1.8	25
119	Synthesis, Spectral Properties of Zinc Hexadecafluorophthalocyanine (ZnPcF ₁₆) and Its Application in Organic Thin Film Transistors. Materials Transactions, 2017, 58, 103-106.	0.4	5
120	Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices. Dyes and Pigments, 2016, 131, 41-48.	2.0	22
121	Application of phenonaphthazine derivatives as hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2016, 25, 702-708.	7.1	18
122	A trap-assisted ultrasensitive near-infrared organic photomultiple photodetector based on Y-type titanylphthalocyanine nanoparticles. Journal of Materials Chemistry C, 2016, 4, 5584-5592.	2.7	27
123	A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 16330-16334.	5.2	87
124	A novel asymmetric phthalocyanine-based hole transporting material for perovskite solar cells with an open-circuit voltage above 1.0 V. Synthetic Metals, 2016, 220, 462-468.	2.1	38
125	Dopantâ€Free Donor (D)–΀–D–΀–D Conjugated Holeâ€Transport Materials for Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2578-2585.	3.6	83
126	Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater thanÅ21%. Nature Energy, 2016, 1, .	19.8	1,719

#	Article	IF	CITATIONS
127	Studies on the dispersity of polymethacrylate-grafted carbon black in a non-aqueous medium: the influence of monomer structure. Journal of Materials Science: Materials in Electronics, 2016, 27, 2022-2030.	1.1	4
128	Improvement in photovoltaic performance of perovskite solar cells by interface modification and co-sensitization with novel asymmetry 7-coumarinoxy-4-methyltetrasubstituted metallophthalocyanines. Synthetic Metals, 2016, 220, 187-193.	2.1	21
129	A Novel Dopantâ€Free Triphenylamine Based Molecular "Butterfly―Holeâ€Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600401.	10.2	161
130	The effect of coadsorbent and solvent on the photovoltaic performance of 2,9,16,23-Tetrakis(7-coumarinoxy-4-methyl)-phthalocyaninatocopper-sensitized solar cells. Journal of Molecular Structure, 2016, 1107, 329-336.	1.8	15
131	Molecular design and photovoltaic performance of a novel thiocyanate-based layered organometal perovskite material. Synthetic Metals, 2016, 215, 56-63.	2.1	31
132	Studies on the charging behaviors of copper chromite black in nonpolar media with nonionic surfactants for electrophoretic displays. Journal of Materials Chemistry C, 2016, 4, 323-330.	2.7	7
133	Film-forming hole transporting materials for high brightness flexible organic light-emitting diodes. Dyes and Pigments, 2016, 125, 36-43.	2.0	13
134	Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery. Ionics, 2016, 22, 209-218.	1.2	17
135	Recent Progress of Perovskite Solar Cells. Current Nanoscience, 2016, 12, 137-156.	0.7	39
136	Preparation of titanium dioxide nanoparticles modified with methacrylate and their electrophoretic properties. Journal of Materials Science: Materials in Electronics, 2015, 26, 5263-5269.	1.1	2
137	Synthesis of novel s-triazine/carbazole based bipolar molecules and their application in phosphorescent OLEDs. Journal of Materials Science: Materials in Electronics, 2015, 26, 6563-6571.	1.1	4
138	The Synthesis, Characterisation, Photophysical and Thermal Properties, and Photovoltaic Performance of 7-Coumarinoxy-4-Methyltetrasubstituted Metallophthalocyanines. Australian Journal of Chemistry, 2015, 68, 1025.	0.5	12
139	Synthesis and characterization of Li2Zn0.6Cu0.4Ti3O8 anode material via a sol-gel method. Electrochimica Acta, 2015, 167, 201-206.	2.6	31
140	Solution-processed thermally stable amorphous films of small molecular hole injection/transport bi-functional materials and their application in high efficiency OLEDs. Journal of Materials Chemistry C, 2015, 3, 11377-11384.	2.7	39
141	Simple Triphenylamine-Based Hole-Transporting Materials for Perovskite Solar Cells. Electrochimica Acta, 2015, 182, 733-741.	2.6	57
142	Charging behavior of carbon black in a low-permittivity medium based on acid–base charging theory. Journal of Materials Chemistry C, 2015, 3, 3980-3988.	2.7	9
143	Titanylphthalocyanine as hole transporting material for perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 756-761.	7.1	28
144	Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 2015, 8, 1116-1127.	5.8	65

#	Article	IF	CITATIONS
145	Preparation of titanium dioxide nano-particles modified with poly (methyl methacrylate) and its electrorheological characteristics in Isopar L. Colloid and Polymer Science, 2015, 293, 473-479.	1.0	7
146	Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 5829.	2.2	132
147	Simple Way to Engineer Metal–Semiconductor Interface for Enhanced Performance of Perovskite Organic Lead Iodide Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 5651-5656.	4.0	93
148	Mesoscopic TiO2/CH3NH3PbI3 perovskite solar cells with new hole-transporting materials containing butadiene derivatives. Chemical Communications, 2014, 50, 6931.	2.2	163
149	Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 15239-15242.	2.2	134
150	Double-N doping: a new discovery about N-doped TiO ₂ applied in dye-sensitized solar cells. RSC Advances, 2014, 4, 16992-16998.	1.7	20
151	Novel photochromic and electrochromic diarylethenes bearing triphenylamine units. RSC Advances, 2014, 4, 16839-16848.	1.7	15
152	A thin pristine non-triarylamine hole-transporting material layer for efficient CH ₃ NH ₃ PbI ₃ perovskite solar cells. RSC Advances, 2014, 4, 32918.	1.7	35
153	The synthesis, molecular structure and photophysical properties of 2, 9, 16, 23-tetrakis (7-coumarinoxy-4-methyl)-phthalocyanine sensitizer. Journal of Molecular Structure, 2014, 1060, 17-23.	1.8	12
154	Multi-scale simulation studies on interaction between anionic surfactants and cations. AIP Advances, 2014, 4, .	0.6	3
155	Study on synthesis and properties of novel luminescent hole transporting materials based on N,N′-di(p-tolyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine core. Dyes and Pigments, 2013, 97, 92-99.	2.0	16
156	Anatase TiO2 hollow spheres with small dimension fabricated via a simple preparation method for dye-sensitized solar cells with an ionic liquid electrolyte. Electrochimica Acta, 2012, 60, 422-427.	2.6	48
157	Synthesis and photoconductivities of bisazo charge generation materials. Frontiers of Chemical Engineering in China, 2008, 2, 330-334.	0.6	1
158	Studies on the Synthetic Process of 4,5-Dicyano Dimethyl Phthalate. Advanced Materials Research, 0, 1053, 252-256.	0.3	3