Björn Wallner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4202250/publications.pdf

Version: 2024-02-01

33	2,955	24 h-index	33
papers	citations		g-index
37	37 docs citations	37	3481
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	The MYC oncoprotein directly interacts with its chromatin cofactor PNUTS to recruit PP1 phosphatase. Nucleic Acids Research, 2022, 50, 3505-3522.	14.5	11
2	InterPepScore: a deep learning score for improving the FlexPepDock refinement protocol. Bioinformatics, 2022, 38, 3209-3215.	4.1	1
3	InterPep2: global peptide–protein docking using interaction surface templates. Bioinformatics, 2020, 36, 2458-2465.	4.1	30
4	InterLig: improved ligand-based virtual screening using topologically independent structural alignments. Bioinformatics, 2020, 36, 3266-3267.	4.1	4
5	Estimation of model accuracy in CASP13. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1361-1377.	2.6	78
6	rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments. PLoS ONE, 2019, 14, e0220182.	2.5	62
7	Predicting protein-peptide interaction sites using distant protein complexes as structural templates. Scientific Reports, 2019, 9, 4267.	3.3	44
8	Improved protein model quality assessments by changing the target function. Proteins: Structure, Function and Bioinformatics, 2018, 86, 654-663.	2.6	11
9	Methods for estimation of model accuracy in CASP12. Proteins: Structure, Function and Bioinformatics, 2018, 86, 361-373.	2.6	27
10	InterPred: A pipeline to identify and model protein–protein interactions. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1159-1170.	2.6	32
11	Proteus: a random forest classifier to predict disorder-to-order transitioning binding regions in intrinsically disordered proteins. Journal of Computer-Aided Molecular Design, 2017, 31, 453-466.	2.9	31
12	DockQ: A Quality Measure for Protein-Protein Docking Models. PLoS ONE, 2016, 11, e0161879.	2.5	205
13	Charge Pair Interactions in Transmembrane Helices and Turn Propensity of the Connecting Sequence Promote Helical Hairpin Insertion. Journal of Molecular Biology, 2013, 425, 830-840.	4.2	30
14	Improved model quality assessment using ProQ2. BMC Bioinformatics, 2012, 13, 224.	2.6	173
15	The Free Energy Barrier for Arginine Gating Charge Translation Is Altered by Mutations in the Voltage Sensor Domain. PLoS ONE, 2012, 7, e45880.	2.5	19
16	Tracking a complete voltage-sensor cycle with metal-ion bridges. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8552-8557.	7.1	132
17	Microsecond Simulations Indicate that Ethanol Binds between Subunits and Could Stabilize an Open-State Model of a Clycine Receptor. Biophysical Journal, 2011, 100, 1642-1650.	0.5	72
18	Improved predictions by Pcons.net using multiple templates. Bioinformatics, 2011, 27, 426-427.	4.1	12

#	Article	IF	Citations
19	Model quality assessment for membrane proteins. Bioinformatics, 2010, 26, 3067-3074.	4.1	71
20	Modeling Anesthetic Binding Sites within the Glycine Alpha One Receptor Based on Prokaryotic Ion Channel Templates: The Problem with TM4. Journal of Chemical Information and Modeling, 2010, 50, 2248-2255.	5.4	24
21	Prediction of membrane protein structures with complex topologies using limited constraints. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1409-1414.	7.1	140
22	Assessment of global and local model quality in CASP8 using Pcons and ProQ. Proteins: Structure, Function and Bioinformatics, 2009, 77, 167-172.	2.6	62
23	Using multiple templates to improve quality of homology models in automated homology modeling. Protein Science, 2008, 17, 990-1002.	7.6	130
24	Pcons.net: protein structure prediction meta server. Nucleic Acids Research, 2007, 35, W369-W374.	14.5	54
25	Prediction of global and local model quality in CASP7 using Pcons and ProQ. Proteins: Structure, Function and Bioinformatics, 2007, 69, 184-193.	2.6	97
26	Identification of correct regions in protein models using structural, alignment, and consensus information. Protein Science, 2006, 15, 900-913.	7.6	184
27	All are not equal: A benchmark of different homology modeling programs. Protein Science, 2005, 14, 1315-1327.	7.6	185
28	Tertiary Windowing to Detect Positive Diversifying Selection. Journal of Molecular Evolution, 2005, 60, 499-504.	1.8	37
29	Pcons5: combining consensus, structural evaluation and fold recognition scores. Bioinformatics, 2005, 21, 4248-4254.	4.1	103
30	Profile-profile methods provide improved fold-recognition: A study of different profile-profile alignment methods. Proteins: Structure, Function and Bioinformatics, 2004, 57, 188-197.	2.6	85
31	Automatic consensus-based fold recognition using Pcons, ProQ, and Pmodeller. Proteins: Structure, Function and Bioinformatics, 2003, 53, 534-541.	2.6	112
32	Using evolutionary information for the query and target improves fold recognition. Proteins: Structure, Function and Bioinformatics, 2003, 54, 342-350.	2.6	29
33	Can correct protein models be identified?. Protein Science, 2003, 12, 1073-1086.	7.6	646