Noriaki Ono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4201765/publications.pdf

Version: 2024-02-01

45 3,090 23 43 g-index

50 50 50 4309 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology. Biocell, 2022, 46, 1157-1162.	0.7	3
2	The collagen receptor, discoidin domain receptor 2, functions in Gli1-positive skeletal progenitors and chondrocytes to control bone development. Bone Research, 2022, 10, 11.	11.4	15
3	Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Frontiers in Endocrinology, 2022, 13, 882297.	3.5	4
4	Singleâ€Cell <scp>RNA</scp> â€Sequencing Leading to Breakthroughs in Musculoskeletal Research. JBMR Plus, 2022, 6, .	2.7	1
5	Cranial Base Synchondrosis: Chondrocytes at the Hub. International Journal of Molecular Sciences, 2022, 23, 7817.	4.1	9
6	Cranial Base Synchondrosis Lacks PTHrP-Expressing Column-Forming Chondrocytes. International Journal of Molecular Sciences, 2022, 23, 7873.	4.1	4
7	Bone regeneration via skeletal cell lineage plasticity: All hands mobilized for emergencies. BioEssays, 2021, 43, e2000202.	2.5	13
8	Unveiling diversity of stem cells in dental pulp and apical papilla using mouse genetic models: a literature review. Cell and Tissue Research, 2021, 383, 603-616.	2.9	12
9	Flow Cytometry-Based Analysis of the Mouse Bone Marrow Stromal and Perivascular Compartment. Methods in Molecular Biology, 2021, 2308, 83-94.	0.9	9
10	Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment. ELife, 2021, 10 , .	6.0	31
11	Single-Cell Transcriptomic Analysis Reveals Developmental Relationships and Specific Markers of Mouse Periodontium Cellular Subsets. Frontiers in Dental Medicine, 2021, 2, .	1.4	16
12	The hypertrophic chondrocyte: To be or not to be. Histology and Histopathology, 2021, , 18355.	0.7	13
13	The Role of Wnt Signaling in Postnatal Tooth Root Development. Frontiers in Dental Medicine, 2021, 2,	1.4	11
14	Mesenchymal Progenitor Regulation of Tooth Eruption: A View from PTHrP. Journal of Dental Research, 2020, 99, 133-142.	5.2	32
15	A threeâ€dimensional analysis of primary failure of eruption in humans and mice. Oral Diseases, 2020, 26, 391-400.	3.0	14
16	Skeletal Stem Cells for Bone Development and Repair: Diversity Matters. Current Osteoporosis Reports, 2020, 18, 189-198.	3.6	45
17	A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nature Communications, 2020, 11, 332.	12.8	184
18	Growth plate skeletal stem cells and their transition from cartilage to bone. Bone, 2020, 136, 115359.	2.9	41

#	Article	IF	Citations
19	Intercellular Interactions of an Adipogenic CXCL12-Expressing Stromal Cell Subset in Murine Bone Marrow. Journal of Bone and Mineral Research, 2020, 36, 1145-1158.	2.8	14
20	The diverse origin of bone-forming osteoblasts. Journal of Bone and Mineral Research, 2020, 36, 1432-1447.	2.8	56
21	A role for fat precursors in the marrow. ELife, 2020, 9, .	6.0	0
22	The Unmixing Problem: A Guide to Applying Single-Cell RNA Sequencing to Bone. Journal of Bone and Mineral Research, 2019, 34, 1207-1219.	2.8	34
23	Single-Cell Analysis of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration. Cell Stem Cell, 2019, 25, 23-38.e8.	11.1	176
24	Growth Plate Borderline Chondrocytes Behave as Transient Mesenchymal Precursor Cells. Journal of Bone and Mineral Research, 2019, 34, 1387-1392.	2.8	44
25	Stem and progenitor cells in skeletal development. Current Topics in Developmental Biology, 2019, 133, 1-24.	2.2	61
26	Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond. International Journal of Molecular Sciences, 2019, 20, 6009.	4.1	92
27	Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 575-580.	7.1	91
28	Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature, 2018, 563, 254-258.	27.8	280
29	Msx2 Marks Spatially Restricted Populations of Mesenchymal Precursors. Journal of Dental Research, 2018, 97, 1260-1267.	5.2	3
30	The fate of Osterixâ€expressing mesenchymal cells in dental root formation and maintenance. Orthodontics and Craniofacial Research, 2017, 20, 39-43.	2.8	10
31	Diverse contribution of <i>Col2a1</i> â€expressing cells to the craniofacial skeletal cell lineages. Orthodontics and Craniofacial Research, 2017, 20, 44-49.	2.8	15
32	Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. Journal of Clinical Investigation, 2017, 127, 3327-3338.	8.2	103
33	Proximity-Based Differential Single-Cell Analysis of the Niche to Identify Stem/Progenitor Cell Regulators. Cell Stem Cell, 2016, 19, 530-543.	11.1	136
34	Bone repair and stem cells. Current Opinion in Genetics and Development, 2016, 40, 103-107.	3.3	33
35	Parathyroid hormone receptor signalling in osterix-expressing mesenchymal progenitors is essential for tooth root formation. Nature Communications, 2016, 7, 11277.	12.8	105
36	Identification of a <i>Prg4</i> â€Expressing Articular Cartilage Progenitor Cell Population in Mice. Arthritis and Rheumatology, 2015, 67, 1261-1273.	5.6	185

#	Article	IF	CITATION
37	Mesenchymal Progenitor Cells for the Osteogenic Lineage. Current Molecular Biology Reports, 2015, 1, 95-100.	1.6	14
38	A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nature Cell Biology, 2014, 16, 1157-1167.	10.3	346
39	Loss of Gsα Early in the Osteoblast Lineage Favors Adipogenic Differentiation of Mesenchymal Progenitors and Committed Osteoblast Precursors. Journal of Bone and Mineral Research, 2014, 29, 2414-2426.	2.8	33
40	Osterix Marks Distinct Waves of Primitive and Definitive Stromal Progenitors during Bone Marrow Development. Developmental Cell, 2014, 29, 340-349.	7.0	365
41	Vasculature-Associated Cells Expressing Nestin in Developing Bones Encompass Early Cells in the Osteoblast and Endothelial Lineage. Developmental Cell, 2014, 29, 330-339.	7.0	160
42	Loss of wnt/ \hat{l}^2 -catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. Journal of Bone and Mineral Research, 2012, 27, 2344-2358.	2.8	201
43	Constitutively active PTH/PTHrP receptor specifically expressed in osteoblasts enhances bone formation induced by bone marrow ablation. Journal of Cellular Physiology, 2012, 227, 408-415.	4.1	22
44	Osteopontin Negatively Regulates Parathyroid Hormone Receptor Signaling in Osteoblasts. Journal of Biological Chemistry, 2008, 283, 19400-19409.	3.4	29
45	Constitutively Active Parathyroid Hormone Receptor Signaling in Cells in Osteoblastic Lineage Suppresses Mechanical Unloading-induced Bone Resorption. Journal of Biological Chemistry, 2007, 282, 25509-25516.	3.4	22