Jessie Theuns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/42011/publications.pdf

Version: 2024-02-01

		101543	182427
52	5,109	36	51
papers	citations	h-index	g-index
57	57	57	7162
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multi-centre evaluation of a comprehensive preimplantation genetic test through haplotyping-by-sequencing. Human Reproduction, 2019, 34, 1608-1619.	0.9	48
2	Agilent Technologies OnePGT solution: External verification on both blastomere and trophectoderm biopsies. Reproductive BioMedicine Online, 2019, 38, e11-e12.	2.4	0
3	Mutations in glucocerebrosidase are a major genetic risk factor for Parkinson's disease and increase susceptibility to dementia in a Flanders-Belgian cohort. Neuroscience Letters, 2016, 629, 160-164.	2.1	34
4	Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends in Genetics, 2015, 31, 140-149.	6.7	193
5	Global investigation and meta-analysis of the <i>C9orf72</i> (G ₄ C ₂) _n repeat in Parkinson disease. Neurology, 2014, 83, 1906-1913.	1.1	56
6	Alphaâ€synuclein repeat variants and survival in Parkinson's disease. Movement Disorders, 2014, 29, 1053-1057.	3.9	14
7	Populationâ€specific frequencies for <i>LRRK2</i> susceptibility variants in the genetic epidemiology of Parkinson's disease (GEOâ€PD) consortium. Movement Disorders, 2013, 28, 1740-1744.	3.9	30
8	A Panâ€∢scp>European Study of the <i>C9orf72</i> Repeat Associated with <scp>FTLD</scp> : Geographic Prevalence, Genomic Instability, and Intermediate Repeats. Human Mutation, 2013, 34, 363-373.	2.5	247
9	A Multicenter Study of Glucocerebrosidase Mutations in Dementia With Lewy Bodies. JAMA Neurology, 2013, 70, 727.	9.0	374
10	Amyloid Pathology Influences A \hat{I}^2 1-42 Cerebrospinal Fluid Levels in Dementia with Lewy Bodies. Journal of Alzheimer's Disease, 2013, 35, 137-146.	2.6	45
11	A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. Journal of Medical Genetics, 2012, 49, 721-726.	3.2	94
12	DLB and PDD: a role for mutations in dementia and Parkinson disease genes?. Neurobiology of Aging, 2012, 33, 629.e5-629.e18.	3.1	73
13	Contribution of VPS35 genetic variability to LBD in the Flanders-Belgian population. Neurobiology of Aging, 2012, 33, 1844.e11-1844.e13.	3.1	21
14	Large-scale replication and heterogeneity in Parkinson disease genetic loci. Neurology, 2012, 79, 659-667.	1.1	119
15	<i>Guanosine triphosphate cyclohydrolase 1</i> promoter deletion causes dopaâ€responsive dystonia. Movement Disorders, 2012, 27, 1451-1456.	3.9	11
16	The Genetics of Dementia With Lewy Bodies. Archives of Neurology, 2012, 69, 1113-8.	4.5	52
17	Locusâ€specific mutation databases for neurodegenerative brain diseases. Human Mutation, 2012, 33, 1340-1344.	2.5	414
18	Non-motor symptoms in a Flanders-Belgian population of 215 Parkinson's disease patients as assessed by the Non-Motor Symptoms Questionnaire. American Journal of Neurodegenerative Disease, 2012, 1, 160-7.	0.1	24

#	Article	IF	Citations
19	Parkinson disease: Insights in clinical, genetic and pathological features of monogenic disease subtypes. Journal of Chemical Neuroanatomy, 2011, 42, 131-141.	2.1	65
20	Juvenile dystonia-parkinsonism and dementia caused by a novel ATP13A2 frameshift mutation. Parkinsonism and Related Disorders, 2011, 17, 135-138.	2.2	54
21	GIGYF2 has no major role in Parkinson genetic etiology in a Belgian population. Neurobiology of Aging, 2011, 32, 308-312.	3.1	14
22	A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson's disease. Neurobiology of Aging, 2011, 32, 548.e9-548.e18.	3.1	56
23	Role of sepiapterin reductase gene at the PARK3 locus in Parkinson's disease. Neurobiology of Aging, 2011, 32, 2108.e1-2108.e5.	3.1	23
24	Association of LRRK2 exonic variants with susceptibility to Parkinson's disease: a case–control study. Lancet Neurology, The, 2011, 10, 898-908.	10.2	294
25	Comprehensive Genetic and Mutation Analysis of Familial Dementia with Lewy Bodies Linked to 2q35-q36. Journal of Alzheimer's Disease, 2010, 20, 197-205.	2.6	20
26	Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Human Mutation, 2010, 31, 763-780.	2.5	428
27	GIGYF2 in Parkinson's disease: Innocent until proven otherwise. Neurobiology of Aging, 2010, 31, 1072-1074.	3.1	4
28	Relative contribution of simple mutations vs. copy number variations in five Parkinson disease genes in the Belgian population. Human Mutation, 2009, 30, 1054-1061.	2.5	58
29	<i>APP</i> and <i>BACE1</i> miRNA genetic variability has no major role in risk for Alzheimer disease. Human Mutation, 2009, 30, 1207-1213.	2.5	52
30	Genetic variability in the mitochondrial serine protease <i>HTRA2</i> contributes to risk for Parkinson disease. Human Mutation, 2008, 29, 832-840.	2.5	107
31	Founder mutation p.R1441C in the leucine-rich repeat kinase 2 gene in Belgian Parkinson's disease patients. European Journal of Human Genetics, 2008, 16, 471-479.	2.8	47
32	Intraneuronal amyloid \hat{l}^2 and reduced brain volume in a novel APP T714I mouse model for Alzheimer's disease. Neurobiology of Aging, 2008, 29, 241-252.	3.1	52
33	Â-Synuclein gene duplications in sporadic Parkinson disease. Neurology, 2008, 70, 7-9.	1.1	13
34	A novel locus for dementia with Lewy bodies: a clinically and genetically heterogeneous disorder. Brain, 2007, 130, 2277-2291.	7.6	56
35	Alzheimer and Parkinson Diagnoses in Progranulin Null Mutation Carriers in an Extended Founder Family. Archives of Neurology, 2007, 64, 1436.	4.5	143
36	Genetic variant in the HSPB1 promoter region impairs the HSP27 stress response. Human Mutation, 2007, 28, 830-830.	2.5	47

#	Article	IF	CITATIONS
37	Promoter Mutations That Increase Amyloid Precursor-Protein Expression Are Associated with Alzheimer Disease. American Journal of Human Genetics, 2006, 78, 936-946.	6.2	173
38	APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy. Brain, 2006, 129, 2977-2983.	7. 6	337
39	Mean age-of-onset of familial alzheimer disease caused by presenilin mutations correlates with both increased $A\hat{l}^242$ and decreased $A\hat{l}^240$. Human Mutation, 2006, 27, 686-695.	2.5	306
40	Genetic risk and transcriptional variability of amyloid precursor protein in Alzheimer's disease. Brain, 2006, 129, 2984-2991.	7.6	76
41	Tau is central in the genetic Alzheimer–frontotemporal dementia spectrum. Trends in Genetics, 2005, 21, 664-672.	6.7	55
42	High-density SNP haplotyping suggests altered regulation of tau gene expression in progressive supranuclear palsy. Human Molecular Genetics, 2005, 14, 3281-3292.	2.9	156
43	Linkage and Association Studies Identify a Novel Locus for Alzheimer Disease at 7q36 in a Dutch Population-Based Sample. American Journal of Human Genetics, 2005, 77, 643-652.	6.2	48
44	A novel presenilin 1 mutation associated with Pick's disease but not $\hat{l}^2 \hat{a} \in \mathbf{n}$ myloid plaques. Annals of Neurology, 2004, 55, 617-626.	5. 3	210
45	Alzheimer-associated C allele of the promoter polymorphism -22C>T causes a critical neuron-specific decrease of presenilin 1 expression. Human Molecular Genetics, 2003, 12, 869-877.	2.9	45
46	The Gene Encoding Nicastrin, a Major Î ³ -Secretase Component, Modifies Risk for Familial Early-Onset Alzheimer Disease in a Dutch Population-Based Sample. American Journal of Human Genetics, 2002, 70, 1568-1574.	6.2	45
47	TheTNFRSF6 gene is not implicated in familial early-onset Alzheimer's disease. Human Genetics, 2001, 108, 552-553.	3.8	6
48	Genetic association of the presenilin-1 regulatory region with early-onset Alzheimer's disease in a population-based sample. European Journal of Human Genetics, 1999, 7, 801-806.	2.8	49
49	Determination of the genomic organization of human presentlin 1 by fiber-FISH analysis and restriction mapping of cloned DNA. Mammalian Genome, 1999, 10 , $410-414$.	2.2	9
50	Genetic and physical characterization of the early-onset Alzheimer's disease AD3 locus on chromosome 14q24.3. Human Molecular Genetics, 1995, 4, 1355-1364.	2.9	27
51	Molecular genetic analysis of familial early-onset Alzheimer's disease linked to chromosome 14q24.3. Human Molecular Genetics, 1995, 4, 2363-2371.	2.9	171
52	Mutation analysis of the chromosome 14q24.3 dihydrolipoyl succinyltransferase (DLST) gene in patients with early-onset Alzheimer disease. Neuroscience Letters, 1995, 199, 73-77.	2.1	9