
Jan Schroers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/420085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlation symmetry analysis of electron nanodiffraction from amorphous materials. Ultramicroscopy, 2022, 232, 113405.	0.8	7
2	Topology-optimized bulk metallic glass cellular materials for energy absorption. Scripta Materialia, 2022, 208, 114361.	2.6	12
3	Data-driven discovery of a universal indicator for metallic glass forming ability. Nature Materials, 2022, 21, 165-172.	13.3	46
4	Nanofabrication through molding. Progress in Materials Science, 2022, 125, 100891.	16.0	39
5	Combinatorial High-Throughput Methods for Designing Hydrogen Evolution Reaction Catalysts. ACS Catalysis, 2022, 12, 3789-3796.	5.5	22
6	Electrical resistivity as a descriptor for classification of amorphous versus crystalline phases of alloys. Acta Materialia, 2022, 231, 117861.	3.8	15
7	Fabrication of 3D metallic glass architectures by a mold-strain-set method. Materials and Design, 2022, 218, 110668.	3.3	4
8	Nonaffine Strains Control Ductility of Metallic Glasses. Physical Review Letters, 2022, 128, 155501.	2.9	11
9	Compositional dependence of the fragility in metallic glass forming liquids. Nature Communications, 2022, 13, .	5.8	14
10	Glass-forming ability of binary Lennard-Jones systems. Physical Review Materials, 2022, 6, .	0.9	3
11	Theoretical prediction of high melting temperature for a Mo–Ru–Ta–W HCP multiprincipal element alloy. Npj Computational Materials, 2021, 7, .	3.5	186
12	Atomic-scale homogeneous plastic flow beyond near-theoretical yield stress in a metallic glass. Communications Materials, 2021, 2, .	2.9	10
13	Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys. Scientific Reports, 2021, 11, 3903.	1.6	10
14	Enhancing ductility in bulk metallic glasses by straining during cooling. Communications Materials, 2021, 2, .	2.9	16
15	Biocompatibility of platinum-based bulk metallic glass in orthopedic applications. Biomedical Materials (Bristol), 2021, 16, 045018.	1.7	8
16	Static-state particle fabrication via rapid vitrification of a thixotropic medium. Nature Communications, 2021, 12, 3768.	5.8	4
17	Fast Surface Dynamics on a Metallic Glass Nanowire. ACS Nano, 2021, 15, 11309-11316.	7.3	15
18	Angstrom-scale replication of surfaces with crystallized bulk metallic glasses. Materials Today Nano, 2021, 16, 100145.	2.3	1

#	Article	IF	CITATIONS
19	Revealing the relationships between alloy structure, composition and plastic deformation in a ternary alloy system by a combinatorial approach. Journal of Materials Science and Technology, 2021, 84, 97-104.	5.6	9
20	Nanomolding of Gold and Gold–Silicon Heterostructures at Room Temperature. ACS Nano, 2021, 15, 14275-14284.	7.3	8
21	Unleashing nanofabrication through thermomechanical nanomolding. Science Advances, 2021, 7, eabi4567.	4.7	12
22	Single-Crystal Nanostructure Arrays Forming Epitaxially through Thermomechanical Nanomolding. Nano Letters, 2021, 21, 10054-10061.	4.5	10
23	Effect of the fictive temperature on the modulus, hardness, yield strength, dynamic mechanical and creep response of Zr44Ti11Cu10Ni10Be25 metallic glasses. Journal of Alloys and Compounds, 2020, 819, 152979.	2.8	21
24	Joining mechanism of bulk metallic glasses in their supercooled liquid region. Journal of Materials Processing Technology, 2020, 279, 116583.	3.1	10
25	The effect of thermal cycling on the fracture toughness of metallic glasses. Acta Materialia, 2020, 184, 100-108.	3.8	68
26	Effect of chemical composition on the fracture toughness of bulk metallic glasses. Materialia, 2020, 12, 100828.	1.3	30
27	Atomic-Scale Imprinting by Sputter Deposition of Amorphous Metallic Films. ACS Applied Materials & Interfaces, 2020, 12, 52908-52914.	4.0	6
28	Measuring Demisability of Bulk Metallic Glasses for Potential Satellite Applications through Ablation Experiments. Advanced Engineering Materials, 2020, 22, 2000708.	1.6	10
29	Nanomanufacturing of Non-Noble Amorphous Alloys for Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 12099-12107.	2.5	14
30	Optimum Soft Magnetic Properties of the FeSiBNbCu Alloy Achieved by Heat Treatment and Tailoring B/Si Ratio. Metals, 2020, 10, 1297.	1.0	7
31	Metastability in high entropy alloys. Scripta Materialia, 2020, 186, 392-400.	2.6	58
32	Relaxation and crystallization studied by observing the surface morphology evolution of atomically flat Pt57.5Cu14.7Ni5.3P22.5 upon annealing. Scripta Materialia, 2020, 182, 32-37.	2.6	8
33	Combinatorial study of thermal stability in ternary nanocrystalline alloys. Acta Materialia, 2020, 188, 40-48.	3.8	45
34	Overcoming geometric limitations in metallic glasses through stretch blow molding. Applied Materials Today, 2020, 19, 100567.	2.3	9
35	General Nanomolding of Ordered Phases. Physical Review Letters, 2020, 124, 036102.	2.9	21
36	Atomic imprinting in the absence of an intrinsic length scale. APL Materials, 2020, 8, .	2.2	12

#	Article	IF	CITATIONS
37	Glass formation in binary alloys with different atomic symmetries. Physical Review Materials, 2020, 4, .	0.9	5
38	Accelerated discovery and mechanical property characterization of bioresorbable amorphous alloys in the Mg–Zn–Ca and the Fe–Mg–Zn systems using high-throughput methods. Journal of Materials Chemistry B, 2019, 7, 5392-5400.	2.9	18
39	Stability of ternary nanocrystalline alloys in the Pt–Pd–Au system. Materialia, 2019, 8, 100449.	1.3	14
40	Supercluster-Coupled Crystal Growth in Metallic Glass Forming Liquids. Microscopy and Microanalysis, 2019, 25, 1410-1411.	0.2	0
41	Intrinsic dissipation mechanisms in metallic glass resonators. Journal of Chemical Physics, 2019, 151, 144506.	1.2	7
42	Fast Screening of Corrosion Trends in Metallic Glasses. ACS Combinatorial Science, 2019, 21, 666-674.	3.8	9
43	Dependence of Modulus and Hardness on the Annealing Conditions of Pt57.5Cu14.7Ni5.3P22.5 Bulk Metallic Glass. MRS Advances, 2019, 4, 73-79.	0.5	4
44	Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Materialia, 2019, 166, 677-686.	3.8	158
45	Nanomolding of Crystalline Metals: The Smaller the Easier. Physical Review Letters, 2019, 122, 036101.	2.9	30
46	Formation and stability of complex metallic phases including quasicrystals explored through combinatorial methods. Scientific Reports, 2019, 9, 7136.	1.6	17
47	Measured optical constants of Pd77.5Cu6Si16.5 bulk metallic glass. Optical Materials: X, 2019, 1, 100012.	0.3	1
48	High-temperature bulk metallic glasses developed by combinatorial methods. Nature, 2019, 569, 99-103.	13.7	185
49	Supercluster-coupled crystal growth in metallic glass forming liquids. Nature Communications, 2019, 10, 915.	5.8	30
50	Tuning the glass-forming ability of metallic glasses through energetic frustration. Physical Review Materials, 2019, 3, .	0.9	10
51	Structural relaxation kinetics defines embrittlement in metallic glasses. Scripta Materialia, 2018, 149, 21-25.	2.6	16
52	Test sample geometry for fracture toughness measurements of bulk metallic glasses. Acta Materialia, 2018, 145, 477-487.	3.8	43
53	Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nature Communications, 2018, 9, 1129.	5.8	73
54	Atomic imprinting into metallic glasses. Communications Physics, 2018, 1, .	2.0	28

#	Article	IF	CITATIONS
55	Three-Dimensional Compatible Sacrificial Nanoimprint Lithography for Tuning the Wettability of Thermoplastic Materials. Journal of Micro and Nano-Manufacturing, 2018, 6, .	0.8	2
56	Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization. Acta Biomaterialia, 2018, 75, 427-438.	4.1	57
57	Combinatorial temperature resistance sensors for the analysis of phase transformations demonstrated for metallic glasses. Acta Materialia, 2018, 156, 486-495.	3.8	11
58	3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses. Materials Today, 2018, 21, 697-702.	8.3	119
59	Mechanical glass transition revealed by the fracture toughness of metallic glasses. Nature Communications, 2018, 9, 3271.	5.8	103
60	Regulation of Mesenchymal Stem Cell Differentiation by Nanopatterning of Bulk Metallic Glass. Scientific Reports, 2018, 8, 8758.	1.6	41
61	Hierarchical Micro- and Nanopatterning of Metallic Class to Engineer Cellular Responses. ACS Applied Bio Materials, 2018, 1, 51-58.	2.3	12
62	Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible. Physical Review E, 2017, 95, 022611.	0.8	39
63	Exploring a wider range of Mg–Ca–Zn metallic glass as biocompatible alloys using combinatorial sputtering. Chemical Communications, 2017, 53, 8288-8291.	2.2	27
64	Processing effects on fracture toughness of metallic glasses. Scripta Materialia, 2017, 130, 152-156.	2.6	38
65	How Many Bulk Metallic Glasses Are There?. ACS Combinatorial Science, 2017, 19, 687-693.	3.8	46
66	Pulsed Laser Beam Welding of Pd43Cu27Ni10P20 Bulk Metallic Glass. Scientific Reports, 2017, 7, 7989.	1.6	26
67	Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing. Scientific Reports, 2017, 7, 7155.	1.6	49
68	Atomic-scale Relaxation Dynamics in the Supercooled Liquid State of a Metallic Glass Nanowire by Electron Correlation Microscopy. Microscopy and Microanalysis, 2017, 23, 960-961.	0.2	0
69	Tailoring crystallization phases in metallic glass nanorods via nucleus starvation. Nature Communications, 2017, 8, 1980.	5.8	31
70	Nanopatterned Bulk Metallic Glass Biosensors. ACS Sensors, 2017, 2, 1779-1787.	4.0	26
71	Criticality in Bulk Metallic Glass Constituent Elements. Jom, 2017, 69, 2156-2163.	0.9	6
72	Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media. Journal of Materials Chemistry A, 2017, 5, 67-72.	5.2	30

#	Article	IF	CITATIONS
73	Noble metal high entropy alloys. Scripta Materialia, 2017, 126, 29-32.	2.6	76
74	Applications and limitations of electron correlation microscopy to study relaxation dynamics in supercooled liquids. Ultramicroscopy, 2017, 178, 125-130.	0.8	11
75	Particle rearrangement and softening contributions to the nonlinear mechanical response of glasses. Physical Review E, 2017, 96, 032602.	0.8	10
76	Combinatorial Strategies for Synthesis and Characterization of Alloy Microstructures over Large Compositional Ranges. ACS Combinatorial Science, 2016, 18, 630-637.	3.8	20
77	Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nature Communications, 2016, 7, 12315.	5.8	104
78	Thermomechanical Behavior of Molded Metallic Glass Nanowires. Scientific Reports, 2016, 6, 19530.	1.6	17
79	Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses. Scientific Reports, 2016, 6, 26950.	1.6	57
80	Regulation of cell-cell fusion by nanotopography. Scientific Reports, 2016, 6, 33277.	1.6	30
81	Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces. Advanced Materials, 2016, 28, 1940-1949.	11.1	71
82	Heterogeneous WS _{<i>x</i>} /WO ₃ Thorn-Bush Nanofiber Electrodes for Sodium-Ion Batteries. ACS Nano, 2016, 10, 3257-3266.	7.3	121
83	Electrocatalysts: Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces (Adv. Mater. 10/2016). Advanced Materials, 2016, 28, 1902-1902.	11.1	Ο
84	Flaw tolerance of metallic glasses. Acta Materialia, 2016, 107, 220-228.	3.8	61
85	3D metallic glass cellular structures. Acta Materialia, 2016, 105, 35-43.	3.8	69
86	Multiscale patterning of a metallic glass using sacrificial imprint lithography. Microsystems and Nanoengineering, 2015, 1, .	3.4	16
87	Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses. Journal of Chemical Physics, 2015, 143, 184502.	1.2	18
88	The glass-forming ability of model metal-metalloid alloys. Journal of Chemical Physics, 2015, 142, 104504.	1.2	15
89	Does the fracture toughness of bulk metallic glasses scatter?. Scripta Materialia, 2015, 107, 1-4.	2.6	44
90	Critical Crystallization for Embrittlement in Metallic Glasses. Physical Review Letters, 2015, 115, 265502.	2.9	48

#	Article	IF	CITATIONS
91	Functionalization of Metallic Glasses through Hierarchical Patterning. Nano Letters, 2015, 15, 963-968.	4.5	98
92	Shear-accelerated crystallization in a supercooled atomic liquid. Physical Review E, 2015, 91, 020301.	0.8	28
93	Protocols for multi-step thermoplastic processing of metallic glasses. Scripta Materialia, 2015, 104, 56-59.	2.6	12
94	Asymmetric crystallization during cooling and heating in model glass-forming systems. Physical Review E, 2015, 91, 032309.	0.8	12
95	Metallic Glass Hemispherical Shell Resonators. Journal of Microelectromechanical Systems, 2015, 24, 19-28.	1.7	47
96	General nanomoulding with bulk metallic glasses. Nanotechnology, 2015, 26, 145301.	1.3	37
97	Metallic glass nanostructures of tunable shape and composition. Nature Communications, 2015, 6, 7043.	5.8	64
98	On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing. Journal of Chemical Physics, 2015, 143, 054501.	1.2	25
99	Computational Nanocharacterization for Combinatorially Developed Bulk Metallic Glass. International Journal of High Speed Electronics and Systems, 2015, 24, 1520012.	0.3	0
100	Nanoscale size effects in crystallization of metallic glass nanorods. Nature Communications, 2015, 6, 8157.	5.8	65
101	Combinatorial exploration of color in gold-based alloys. Gold Bulletin, 2015, 48, 111-118.	1.1	32
102	Combinatorial development of bulk metallic glasses. Nature Materials, 2014, 13, 494-500.	13.3	196
103	Joining of bulk metallic glasses in air. Acta Materialia, 2014, 62, 49-57.	3.8	74
104	High quality factor metallic glass cantilevers with tunable mechanical properties. Applied Physics Letters, 2014, 105, .	1.5	25
105	Connection between the packing efficiency of binary hard spheres and the glass-forming ability of bulk metallic glasses. Physical Review E, 2014, 90, 032311.	0.8	32
106	Glasses made from pure metals. Nature, 2014, 512, 142-143.	13.7	30
107	Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass. ACS Nano, 2014, 8, 4366-4375.	7.3	91
108	Flaw tolerance vs. performance: A tradeoff in metallic glass cellular structures. Acta Materialia, 2014, 73, 259-274.	3.8	55

#	Article	IF	CITATIONS
109	Designing tensile ductility in metallic glasses. Nature Communications, 2013, 4, 2158.	5.8	168
110	Controllable nanoimprinting of metallic glasses: effect of pressure and interfacial properties. Nanotechnology, 2013, 24, 105301.	1.3	44
111	Wettability of nanotextured metallic glass surfaces. Scripta Materialia, 2013, 69, 732-735.	2.6	31
112	Bulk Metallic Glass Micro Fuel Cell. Small, 2013, 9, 2081-2085.	5.2	85
113	Pd–Ni–Cu–P metallic glass nanowires for methanol and ethanol oxidation in alkaline media. International Journal of Hydrogen Energy, 2013, 38, 11248-11255.	3.8	75
114	Critical fictive temperature for plasticity in metallic glasses. Nature Communications, 2013, 4, 1536.	5.8	148
115	Bulk Metallic Glasses. Physics Today, 2013, 66, 32-37.	0.3	255
116	Metallicâ€Glass Nanostructures: Tunable Hierarchical Metallicâ€Glass Nanostructures (Adv. Funct.) Tj ETQq0 0 0) rgBT /Ov	erlock 10 Tf 5

117	Fuel Cells: Bulk Metallic Glass Micro Fuel Cell (Small 12/2013). Small, 2013, 9, 2026-2026.	5.2	1
118	Tunable Hierarchical Metallicâ€Glass Nanostructures. Advanced Functional Materials, 2013, 23, 2708-2713.	7.8	52
119	Size-dependent viscosity in the super-cooled liquid state of a bulk metallic glass. Applied Physics Letters, 2013, 102, 221901.	1.5	29
120	Finite size effects in the crystallization of a bulk metallic glass. Applied Physics Letters, 2013, 103, .	1.5	14
121	Nonuniform friction-area dependency for antimony oxide surfaces sliding on graphite. Physical Review B, 2013, 88, .	1.1	11
122	Solidification of Au-Cu-Si alloys investigated by a combinatorial approach. Journal of Applied Physics, 2012, 111, .	1.1	30
123	Microfabrication: Honeycomb Structures of Bulk Metallic Glasses (Adv. Funct. Mater. 15/2012). Advanced Functional Materials, 2012, 22, 3160-3160.	7.8	2
124	Honeycomb Structures of Bulk Metallic Glasses. Advanced Functional Materials, 2012, 22, 3161-3169.	7.8	79
125	Palladium nanostructures from multi-component metallic glass. Electrochimica Acta, 2012, 74, 145-150.	2.6	47
126	Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au–Cu–Si metallic glasses. Scripta Materialia, 2012, 66, 178-181.	2.6	49

#	Article	IF	CITATIONS
127	Three-Dimensional Shell Fabrication Using Blow Molding of Bulk Metallic Glass. Journal of Microelectromechanical Systems, 2011, 20, 28-36.	1.7	77
128	Bulk Metallic Glass Nanowire Architecture for Electrochemical Applications. ACS Nano, 2011, 5, 2979-2983.	7.3	201
129	Unusual brittle behavior of Pd-based bulk metallic glass. Scripta Materialia, 2011, 65, 585-587.	2.6	67
130	Thermoplastic blow molding of metals. Materials Today, 2011, 14, 14-19.	8.3	118
131	Bulk Metallic Glass: The Smaller the Better. Advanced Materials, 2011, 23, 461-476.	11.1	414
132	Wetting of bulk metallic glass forming liquids on metals and ceramics. Journal of Applied Physics, 2011, 110, .	1.1	22
133	Temperature dependence of the thermoplastic formability in bulk metallic glasses. Journal of Applied Physics, 2011, 110, .	1.1	46
134	Processing of Bulk Metallic Glass. Advanced Materials, 2010, 22, 1566-1597.	11.1	853
135	Atomically smooth surfaces through thermoplastic forming of metallic glass. Applied Physics Letters, 2010, 97, .	1.5	54
136	Calculating glass-forming ability in absence of key kinetic and thermodynamic parameters. Applied Physics Letters, 2010, 97, .	1.5	11
137	Kinetic and thermodynamic studies of the fragility of bulk metallic glass forming liquids. Journal of Applied Physics, 2010, 108, .	1.1	84
138	Thermoplastic extrusion of bulk metallic glass. Scripta Materialia, 2009, 61, 28-31.	2.6	72
139	In situ measurements of surface tension-driven shape recovery in a metallic glass. Scripta Materialia, 2009, 60, 1145-1148.	2.6	29
140	Bulk metallic glasses for biomedical applications. Jom, 2009, 61, 21-29.	0.9	273
141	Nanomoulding with amorphous metals. Nature, 2009, 457, 868-872.	13.7	664
142	On the formability of bulk metallic glass in its supercooled liquid state. Acta Materialia, 2008, 56, 471-478.	3.8	195
143	Hot rolling of bulk metallic glass in its supercooled liquid region. Scripta Materialia, 2008, 59, 187-190.	2.6	50
144	Write and erase mechanisms for bulk metallic glass. Applied Physics Letters, 2008, 92, .	1.5	71

#	Article	IF	CITATIONS
145	Thermoplastic Forming of Bulk Metallic Glass— A Technology for MEMS and Microstructure Fabrication. Journal of Microelectromechanical Systems, 2007, 16, 240-247.	1.7	145
146	Thermo-plastic expansion of amorphous metallic foam. Journal of Alloys and Compounds, 2007, 434-435, 92-96.	2.8	15
147	Thermodynamics, kinetics, and crystallization of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass. Acta Materialia, 2007, 55, 1109-1116.	3.8	117
148	Expansion evolution during foaming of amorphous metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 863-867.	2.6	16
149	Precious bulk metallic glasses for jewelry applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 235-238.	2.6	61
150	Thermoplastic forming of bulk metallic glass—Applications for MEMS and microstructure fabrication. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 898-902.	2.6	123
151	A novel metallic glass composite synthesis method. Scripta Materialia, 2007, 56, 177-180.	2.6	22
152	Blow molding of bulk metallic glass. Scripta Materialia, 2007, 57, 341-344.	2.6	101
153	Strain Rate Induced Crystallization in Bulk Metallic Glass-Forming Liquid. Physical Review Letters, 2006, 96, 075503.	2.9	50
154	The superplastic forming of bulk metallic glasses. Jom, 2005, 57, 35-39.	0.9	234
155	Minimizing convection effects to measure diffusion in liquid droplets during high-temperature electrostatic levitation. Review of Scientific Instruments, 2005, 76, 033909.	0.6	5
156	Gold based bulk metallic glass. Applied Physics Letters, 2005, 87, 061912.	1.5	223
157	Enhanced temperature uniformity by tetrahedral laser heating. Review of Scientific Instruments, 2004, 75, 4523-4527.	0.6	13
158	Synthesis method for amorphous metallic foam. Journal of Applied Physics, 2004, 96, 7723-7730.	1.1	71
159	Dispersion technique studies on Pd43Ni10Cu27P20. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 781-784.	2.6	5
160	Highly processable bulk metallic glass-forming alloys in the Pt–Co–Ni–Cu–P system. Applied Physics Letters, 2004, 84, 3666-3668.	1.5	169
161	Ductile Bulk Metallic Glass. Physical Review Letters, 2004, 93, 255506.	2.9	997
162	Thermodynamics of The Pd43Ni10Cu27P20 Bulk Metallic Glass Forming Alloy. Materials Research Society Symposia Proceedings, 2003, 806, 238.	0.1	5

#	Article	IF	CITATIONS
163	Crossover of Microscopic Dynamics in Metallic Supercooled Liquid Observed by NMR. Physical Review Letters, 2003, 91, 265502.	2.9	16
164	Timescales of crystallization and viscous flow of the bulk glass-forming Zr-Ti-Ni-Cu-Be alloys. Physical Review B, 2003, 67, .	1.1	109
165	Amorphous metallic foam. Applied Physics Letters, 2003, 82, 370-372.	1.5	117
166	Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites. Applied Physics Letters, 2002, 80, 1906-1908.	1.5	65
167	Extremely low critical cooling rate measured on dispersed Pd43Ni10Cu27P20. Applied Physics Letters, 2002, 80, 2069-2071.	1.5	29
168	Extremely Low Critical Cooling Rate for Pd ₄₃ Ni ₁₀ Cu ₂₇ P ₂₀ . Journal of Metastable and Nanocrystalline Materials, 2002, 13, 111-116.	0.1	1
169	Heterogeneous influences on the crystallization of Pd ₄₃ Ni ₁₀ Cu ₂₇ P ₂₀ . Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1207-1217.	0.7	8
170	Microstructures and properties of the tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass composites. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
171	Crystal nucleation in deeply undercooled melts of bulk metallic glass forming systems. Acta Materialia, 2002, 50, 89-100.	3.8	58
172	Critical cooling rate and thermal stability of Zr–Ti–Cu–Ni–Be alloys. Applied Physics Letters, 2001, 78, 1213-1215.	1.5	157
173	Crystallization of Bulk Glass Forming Pd-Based Melts. Journal of Metastable and Nanocrystalline Materials, 2001, 10, 79-84.	0.1	2
174	Crystallization of Zr ₄₁ Ti ₁₄ Cu ₁₂ Ni _{10Materials Transactions, JIM, 2000, 41, 1530-1537.}	JB &g t;Bei	< ;Si UB>2
175	Structural and Phase Transformations During Crystallization of Pd43Ni10Cu27P20 Metallic Glass. Materials Research Society Symposia Proceedings, 2000, 644, 1271.	0.1	0
176	Critical Cooling Rate and Thermal Stability in Zr-Ti-Cu-Ni-Be Bulk Metallic Glasses. Materials Research Society Symposia Proceedings, 2000, 644, 461.	0.1	4
177	History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts. Journal of Applied Physics, 2000, 88, 44-48.	1.1	39
178	Crystallization kinetics of the bulk-glass-forming Pd43Ni10Cu27P20 melt. Applied Physics Letters, 2000, 77, 1158-1160.	1.5	89
179	Repeated crystallization in undercooled Zr41Ti14Cu12Ni10Be23 liquids. Applied Physics Letters, 2000, 76, 2343-2345.	1.5	43
180	Time–temperature–transformation diagram and microstructures of bulk glass forming Pd40Cu30Ni10P20. Applied Physics Letters, 2000, 77, 681-683.	1.5	96

#	Article	IF	CITATIONS
181	Growth kinetics of quasicrystalline and polytetrahedral phases of Al-Pd-Mn, Al-Co, and Al-Fe from the undercooled melt. Physical Review B, 2000, 61, 14500-14506.	1.1	34
182	Characterization of the Interface Between the Bulk Glass Forming Alloy Zr ₄₁ Ti ₁₄ Cu ₁₂ Ni ₁₀ Be ₂₃ with Pure Metals and Ceramics. Journal of Materials Research, 2000, 15, 1617-1621.	1.2	35
183	Glass Forming Ability in the Zr-Nb-Ni-Cu-Al Bulk Metallic Glasses. Journal of Metastable and Nanocrystalline Materials, 2000, 8, 103-108.	0.1	9
184	Crystallization of Zr ₄₁ Ti ₁₄ Cu ₁₂ Ni ₁₀ Be ₂₃ Melts. Journal of Metastable and Nanocrystalline Materials, 2000, 8, 167-172.	0.1	2
185	Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid. Physical Review B, 1999, 60, 11855-11858.	1.1	142
186	Crystallization of Supercooled Zr41Ti14Cu12Ni10B23 Melts During Continuous Heating and Cooling. Materials Research Society Symposia Proceedings, 1998, 554, 263.	0.1	6