Gregory C Welch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible, Metal-Free Hydrogen Activation. Science, 2006, 314, 1124-1126.	12.6	1,852
2	Solution-processed small-molecule solar cells with 6.7% efficiency. Nature Materials, 2012, 11, 44-48.	27.5	1,437
3	Facile Heterolytic Cleavage of Dihydrogen by Phosphines and Boranes. Journal of the American Chemical Society, 2007, 129, 1880-1881.	13.7	762
4	Metalâ€Free Catalytic Hydrogenation. Angewandte Chemie - International Edition, 2007, 46, 8050-8053.	13.8	573
5	Design and Synthesis of Molecular Donors for Solution-Processed High-Efficiency Organic Solar Cells. Accounts of Chemical Research, 2014, 47, 257-270.	15.6	446
6	Reactivity of "Frustrated Lewis Pairs― Three-Component Reactions of Phosphines, a Borane, and Olefins. Angewandte Chemie - International Edition, 2007, 46, 4968-4971.	13.8	410
7	Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 1201-1213.	10.3	361
8	Metal-Free Catalytic Hydrogenation of Polar Substrates by Frustrated Lewis Pairs. Inorganic Chemistry, 2011, 50, 12338-12348.	4.0	297
9	Solar Cell Efficiency, Self-Assembly, and Dipole–Dipole Interactions of Isomorphic Narrow-Band-Gap Molecules. Journal of the American Chemical Society, 2012, 134, 16597-16606.	13.7	297
10	Tuning Lewis acidity using the reactivity of "frustrated Lewis pairs― facile formation of phosphine-boranes and cationic phosphonium-boranes. Dalton Transactions, 2007, , 3407.	3.3	274
11	Regioregular Pyridal[2,1,3]thiadiazole ï€-Conjugated Copolymers. Journal of the American Chemical Society, 2011, 133, 18538-18541.	13.7	213
12	Synthesis, Self-Assembly, and Solar Cell Performance of N-Annulated Perylene Diimide Non-Fullerene Acceptors. Chemistry of Materials, 2016, 28, 7098-7109.	6.7	211
13	Lewis Acid Adducts of Narrow Band Gap Conjugated Polymers. Journal of the American Chemical Society, 2011, 133, 4632-4644.	13.7	207
14	A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices. Journal of Materials Chemistry, 2011, 21, 12700.	6.7	175
15	Pyridalthiadiazole-Based Narrow Band Gap Chromophores. Journal of the American Chemical Society, 2012, 134, 3766-3779.	13.7	160
16	Key components to the recent performance increases of solution processed non-fullerene small molecule acceptors. Journal of Materials Chemistry A, 2015, 3, 16393-16408.	10.3	157
17	A New Chelating Anilido-Imine Donor Related to β-Diketiminato Ligands for Stabilization of Organoyttrium Cations. Organometallics, 2003, 22, 1577-1579.	2.3	148
18	Band Gap Control in Conjugated Oligomers via Lewis Acids. Journal of the American Chemical Society, 2009, 131, 10802-10803.	13.7	147

#	Article	IF	CITATIONS
19	Photoinduced Charge Generation in a Molecular Bulk Heterojunction Material. Journal of the American Chemical Society, 2012, 134, 19828-19838.	13.7	143
20	Improvement of Interfacial Contacts for New Smallâ€Molecule Bulkâ€Heterojunction Organic Photovoltaics. Advanced Materials, 2012, 24, 5368-5373.	21.0	132
21	Optimization of energy levels by molecular design: evaluation of bis-diketopyrrolopyrrole molecular donor materials for bulk heterojunction solar cells. Energy and Environmental Science, 2013, 6, 952.	30.8	113
22	Color Tuning in Polymer Lightâ€Emitting Diodes with Lewis Acids. Angewandte Chemie - International Edition, 2012, 51, 7495-7498.	13.8	112
23	Phosphoniumâ^'Borate Zwitterions, Anionic Phosphines, and Dianionic Phosphoniumâ^'Dialkoxides via Tetrahydrofuran Ring-Opening Reactions. Inorganic Chemistry, 2006, 45, 478-480.	4.0	110
24	Impact of Regiochemistry and Isoelectronic Bridgehead Substitution on the Molecular Shape and Bulk Organization of Narrow Bandgap Chromophores. Journal of the American Chemical Society, 2013, 135, 2298-2305.	13.7	108
25	Simply Complex: The Efficient Synthesis of an Intricate Molecular Acceptor for High-Performance Air-Processed and Air-Tested Fullerene-Free Organic Solar Cells. Chemistry of Materials, 2017, 29, 1309-1314.	6.7	98
26	Reactions of phosphines with electron deficient boranes. Dalton Transactions, 2009, , 1559.	3.3	91
27	Heterolytic Cleavage of Disulfides by Frustrated Lewis Pairs. Inorganic Chemistry, 2009, 48, 9910-9917.	4.0	86
28	Role of trace impurities in the photovoltaic performance of solution processed small-molecule bulk heterojunction solar cells. Chemical Science, 2012, 3, 2103.	7.4	84
29	Electron deficient diketopyrrolopyrrole dyes for organic electronics: synthesis by direct arylation, optoelectronic characterization, and charge carrier mobility. Journal of Materials Chemistry A, 2014, 2, 4198-4207.	10.3	83
30	Pyridine and phosphine reactions with [CPh3][B(C6F5)4]. Inorganica Chimica Acta, 2006, 359, 3066-3071.	2.4	74
31	N-Annulated perylene diimide dimers: acetylene linkers as a strategy for controlling structural conformation and the impact on physical, electronic, optical and photovoltaic properties. Journal of Materials Chemistry C, 2017, 5, 2074-2083.	5.5	68
32	Phthalimide-based π-conjugated small molecules with tailored electronic energy levels for use as acceptors in organic solar cells. Journal of Materials Chemistry C, 2015, 3, 8904-8915.	5.5	64
33	Applying direct heteroarylation synthesis to evaluate organic dyes as the core component in PDI-based molecular materials for fullerene-free organic solar cells. Journal of Materials Chemistry A, 2017, 5, 11623-11633.	10.3	64
34	Perylene diimide based non-fullerene acceptors: top performers and an emerging class featuring N-annulation. Journal of Materials Chemistry A, 2021, 9, 6775-6789.	10.3	63
35	Thermal Rearrangement of Phosphineâ^'B(C ₆ F ₅) ₃ Adducts. Inorganic Chemistry, 2008, 47, 1904-1906.	4.0	58
36	The Role of Solvent Additive Processing in High Performance Small Molecule Solar Cells. Chemistry of Materials, 2014, 26, 6531-6541.	6.7	58

#	Article	IF	CITATIONS
37	A Combined Experimental and Theoretical Study of Conformational Preferences of Molecular Semiconductors. Journal of Physical Chemistry C, 2014, 118, 15610-15623.	3.1	57
38	Fullerene-free polymer solar cells processed from non-halogenated solvents in air with PCE of 4.8%. Chemical Communications, 2017, 53, 1164-1167.	4.1	57
39	Utility of a heterogeneous palladium catalyst for the synthesis of a molecular semiconductor via Stille, Suzuki, and direct heteroarylation cross-coupling reactions. RSC Advances, 2015, 5, 26097-26106.	3.6	56
40	Combining Facile Synthetic Methods with Greener Processing for Efficient Polymerâ€Perylene Diimide Based Organic Solar Cells. Small Methods, 2018, 2, 1800081.	8.6	54
41	Neutral and Cationic Organoaluminum Complexes Utilizing a Novel Anilidoâ^'Phosphinimine Ancillary Ligand. Organometallics, 2004, 23, 1811-1818.	2.3	52
42	Understanding the Role of Thermal Processing in High Performance Solution Processed Small Molecule Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2013, 3, 356-363.	19.5	52
43	Indoor Photovoltaics: Photoactive Material Selection, Greener Ink Formulations, and Slot-Die Coated Active Layers. ACS Applied Materials & Interfaces, 2019, 11, 46017-46025.	8.0	51
44	Perylene diimide based all small-molecule organic solar cells: Impact of branched-alkyl side chains on solubility, photophysics, self-assembly, and photovoltaic parameters. Organic Electronics, 2016, 35, 151-157.	2.6	50
45	Effect of Bridging Atom Identity on the Morphological Behavior of Solution-Processed Small Molecule Bulk Heterojunction Photovoltaics. Chemistry of Materials, 2013, 25, 1688-1698.	6.7	49
46	Ab Initio Study of a Molecular Crystal for Photovoltaics: Light Absorption, Exciton and Charge Carrier Transport. Journal of Physical Chemistry C, 2013, 117, 4920-4930.	3.1	47
47	Solution processed red organic light-emitting-diodes using an <i>N</i> -annulated perylene diimide fluorophore. Journal of Materials Chemistry C, 2020, 8, 2314-2319.	5.5	47
48	An Electronâ€Deficient Small Molecule Accessible from Sustainable Synthesis and Building Blocks for Use as a Fullerene Alternative in Organic Photovoltaics. ChemPhysChem, 2015, 16, 1190-1202.	2.1	43
49	Borane Incorporation in a Non-Fullerene Acceptor To Tune Steric and Electronic Properties and Improve Organic Solar Cell Performance. ACS Applied Energy Materials, 2019, 2, 1229-1240.	5.1	43
50	The structural evolution of an isoindigo-based non-fullerene acceptor for use in organic photovoltaics. RSC Advances, 2015, 5, 80098-80109.	3.6	42
51	A non-fullerene acceptor with a diagnostic morphological handle for streamlined screening of donor materials in organic solar cells. Journal of Materials Chemistry A, 2017, 5, 16907-16913.	10.3	39
52	Design and Computational Characterization of Non-Fullerene Acceptors for Use in Solution-Processable Solar Cells. Journal of Physical Chemistry A, 2014, 118, 7939-7951.	2.5	37
53	N-annulated perylene diimide dimers: the effect of thiophene bridges on physical, electronic, optical, and photovoltaic properties. Sustainable Energy and Fuels, 2017, 1, 1137-1147.	4.9	36
54	Influence of Processing Additives on Charge-Transfer Time Scales and Sound Velocity in Organic Bulk Heterojunction Films. Journal of Physical Chemistry Letters, 2012, 3, 1253-1257.	4.6	35

#	Article	IF	CITATIONS
55	Dithienophosphole-based molecular electron acceptors constructed using direct (hetero)arylation cross-coupling methods. Journal of Materials Chemistry C, 2018, 6, 2148-2154.	5.5	34
56	Synthesis of a Perylene Diimide Dimer with Pyrrolic N–H Bonds and Nâ€Functionalized Derivatives for Organic Fieldâ€Effect Transistors and Organic Solar Cells. European Journal of Organic Chemistry, 2018, 2018, 4592-4599.	2.4	34
57	Donor or Acceptor? How Selection of the Rylene Imide End Cap Impacts the Polarity of π-Conjugated Molecules for Organic Electronics. ACS Applied Energy Materials, 2018, 1, 4906-4916.	5.1	34
58	Perylene Diimide Based Organic Photovoltaics with Slot-Die Coated Active Layers from Halogen-Free Solvents in Air at Room Temperature. ACS Applied Materials & Interfaces, 2019, 11, 39010-39017.	8.0	33
59	Ternary organic solar cells: using molecular donor or acceptor third components to increase open circuit voltage. New Journal of Chemistry, 2019, 43, 10442-10448.	2.8	33
60	Synthesis and structure–property relationships of phthalimide and naphthalimide based organic ï€-conjugated small molecules. Physical Chemistry Chemical Physics, 2016, 18, 14709-14719.	2.8	32
61	Insights into π-Conjugated Small Molecule Neat Films and Blends As Determined Through Photoconductivity. ACS Nano, 2012, 6, 8735-8745.	14.6	31
62	Formation of interfacial traps upon surface protonation in small molecule solution processed bulk heterojunctions probed by photoelectron spectroscopy. Journal of Materials Chemistry C, 2013, 1, 6223.	5.5	31
63	The Optimization of Direct Heteroarylation and Sonogashira Cross-Coupling Reactions as Efficient and Sustainable Synthetic Methods To Access π-Conjugated Materials with Near-Infrared Absorption. ACS Sustainable Chemistry and Engineering, 2016, 4, 3504-3517.	6.7	31
64	An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells. Chemical Communications, 2017, 53, 10168-10171.	4.1	31
65	Understanding the morphology of solution processed fullerene-free small molecule bulk heterojunction blends. Physical Chemistry Chemical Physics, 2016, 18, 12476-12485.	2.8	29
66	Toward a Universally Compatible Nonâ€Fullerene Acceptor: Multiâ€Gram Synthesis, Solvent Vapor Annealing Optimization, and BDTâ€Based Polymer Screening. Solar Rrl, 2018, 2, 1800143.	5.8	29
67	Direct (Hetero)Arylation for the Synthesis of Molecular Materials: Coupling Thieno[3,4-c]pyrrole-4,6-dione with Perylene Diimide to Yield Novel Non-Fullerene Acceptors for Organic Solar Cells. Molecules, 2018, 23, 931.	3.8	29
68	Towards environmentally friendly processing of molecular semiconductors. Journal of Materials Chemistry A, 2013, 1, 11117.	10.3	28
69	A tetrameric perylene diimide non-fullerene acceptor <i>via</i> unprecedented direct (hetero)arylation cross-coupling reactions. Chemical Communications, 2018, 54, 11443-11446.	4.1	28
70	Electrocatalytic CO ₂ Reduction at Lower Overpotentials Using Iron(III) Tetra(<i>meso</i> -thienyl)porphyrins. ACS Applied Energy Materials, 2019, 2, 4022-4026.	5.1	28
71	A direct comparison of monomeric <i>vs.</i> dimeric and non-annulated <i>vs. N</i> -annulated perylene diimide electron acceptors for organic photovoltaics. New Journal of Chemistry, 2019, 43, 5187-5195.	2.8	28
72	High open-circuit voltage roll-to-roll compatible processed organic photovoltaics. Journal of Materials Chemistry C, 2020, 8, 13430-13438.	5.5	28

#	Article	IF	CITATIONS
73	Ni, Pd, Pt, and Ru Complexes of Phosphine-Borate Ligands. Inorganic Chemistry, 2012, 51, 4711-4721.	4.0	27
74	Phthalimide–thiophene-based conjugated organic small molecules with high electron mobility. Journal of Materials Chemistry C, 2014, 2, 2612-2621.	5.5	26
75	Boron–nitrogen substituted dihydroindeno[1,2- <i>b</i>]fluorene derivatives as acceptors in organic solar cells. Chemical Communications, 2019, 55, 11095-11098.	4.1	26
76	Facile synthesis of unsymmetrical and π-extended furan-diketopyrrolopyrrole derivatives through C–H direct (hetero)arylation using a heterogeneous catalyst system. New Journal of Chemistry, 2015, 39, 6714-6717.	2.8	25
77	Slot-Die-Coated Ternary Organic Photovoltaics for Indoor Light Recycling. ACS Applied Materials & Interfaces, 2020, 12, 43684-43693.	8.0	25
78	Thiophene vs thiazole: Effect of the π-connector on the properties of phthalimide end-capped diketopyrrolopyrrole based molecular acceptors for organic photovoltaics. Dyes and Pigments, 2017, 137, 576-583.	3.7	24
79	Acid dyeing for green solvent processing of solvent resistant semiconducting organic thin films. Materials Horizons, 2020, 7, 2959-2969.	12.2	24
80	A Dithienosiloleâ€Benzooxadiazole Donor–Acceptor Copolymer for Utility in Organic Solar Cells. Small, 2011, 7, 1422-1426.	10.0	23
81	Synthesis of an H-aggregated thiophene–phthalimide based small molecule via microwave assisted direct arylation coupling reactions. Dyes and Pigments, 2014, 102, 204-209.	3.7	23
82	Effect of side chains on the electronic and photovoltaic properties of diketopyrrolopyrrole-based molecular acceptors. Organic Electronics, 2016, 37, 479-484.	2.6	23
83	Interfacial ZnO Modification Using a Carboxylic Acid Functionalized N-Annulated Perylene Diimide for Inverted Type Organic Photovoltaics. ACS Applied Electronic Materials, 2019, 1, 1590-1596.	4.3	23
84	A ring fused N-annulated PDI non-fullerene acceptor for high open circuit voltage solar cells processed from non-halogenated solvents. Synthetic Metals, 2019, 250, 55-62.	3.9	23
85	Optimized synthesis of ï€-extended squaraine dyes relevant to organic electronics by direct (hetero)arylation and Sonogashira coupling reactions. Organic and Biomolecular Chemistry, 2017, 15, 3310-3319.	2.8	22
86	Unusual loss of electron mobility upon furan for thiophene substitution in a molecular semiconductor. Organic Electronics, 2015, 18, 118-125.	2.6	21
87	Screening Quinoxaline-Type Donor Polymers for Roll-to-Roll Processing Compatible Organic Photovoltaics. ACS Applied Polymer Materials, 2019, 1, 2168-2176.	4.4	21
88	Significant Photostability Enhancement of Inverted Organic Solar Cells by Inserting an N-Annulated Perylene Diimide (PDIN-H) between the ZnO Electron Extraction Layer and the Organic Active Layer. ACS Applied Energy Materials, 2020, 3, 11655-11665.	5.1	20
89	Improved performance of solution processed OLEDs using <i>N</i> -annulated perylene diimide emitters with bulky side-chains. Materials Advances, 2021, 2, 933-936.	5.4	20
90	Self-vertical phase separation study of nanoparticle/polymer solar cells by introducing fluorinated small molecules. Chemical Communications, 2012, 48, 7250.	4.1	19

#	Article	IF	CITATIONS
91	Benzyl and fluorinated benzyl side chains for perylene diimide non-fullerene acceptors. Materials Chemistry Frontiers, 2018, 2, 2272-2276.	5.9	19
92	Interlayer Engineering of Flexible and Large-Area Red Organic-Light-Emitting Diodes Based on an N-Annulated Perylene Diimide Dimer. ACS Applied Electronic Materials, 2020, 2, 48-55.	4.3	19
93	Bromination of the benzothioxanthene Bloc: toward new ï€-conjugated systems for organic electronic applications. Journal of Materials Chemistry C, 2018, 6, 761-766.	5.5	18
94	Slotâ€Die Coating of All Organic/Polymer Layers for Largeâ€Area Flexible OLEDs: Improved Device Performance with Interlayer Modification. Advanced Materials Technologies, 2021, 6, 2100264.	5.8	18
95	Zinc Oxide-Perylene Diimide Hybrid Electron Transport Layers for Air-Processed Inverted Organic Photovoltaic Devices. ACS Applied Materials & Interfaces, 2021, 13, 49096-49103.	8.0	18
96	A narrow band gap isoindigo based molecular donor for solution processed organic solar cells. New Journal of Chemistry, 2015, 39, 5075-5079.	2.8	17
97	A tetrachlorinated molecular non-fullerene acceptor for high performance near-IR absorbing organic solar cells. Journal of Materials Chemistry C, 2018, 6, 9060-9064.	5.5	17
98	Atomic Precision Graphene Model Compound for Bright Electrochemiluminescence and Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 51736-51743.	8.0	17
99	Water Compatible Direct (Hetero)arylation Polymerization of PPDT2FBT: A Pathway Towards Largeâ€5cale Production of Organic Solar Cells. Asian Journal of Organic Chemistry, 2020, 9, 1318-1325.	2.7	17
100	Indoloquinoxaline as a terminal building block for the construction of π-conjugated small molecules relevant to organic electronics. Dyes and Pigments, 2015, 123, 139-146.	3.7	16
101	Spectroscopic Engineering toward Nearâ€Infrared Absorption of Materials Containing Perylene Diimide. ChemPlusChem, 2017, 82, 1359-1364.	2.8	16
102	Harnessing Direct (Hetero)Arylation in Pursuit of a Saddle-Shaped Perylene Diimide Tetramer. ACS Applied Energy Materials, 2019, 2, 8939-8945.	5.1	16
103	A N–H functionalized perylene diimide with strong red-light absorption for green solvent processed organic electronics. Journal of Materials Chemistry C, 2020, 8, 9811-9815.	5.5	16
104	Near-IR absorption and photocurrent generation using a first-of-its-kind boron difluoride formazanate non-fullerene acceptor. Materials Chemistry Frontiers, 2020, 4, 1643-1647.	5.9	16
105	Synthesis of Molecular Dyads and Triads Based Upon Nâ€Annulated Perylene Diimide Monomers and Dimers. European Journal of Organic Chemistry, 2018, 2018, 6933-6943.	2.4	15
106	Organic light emitting diodes (OLEDs) with slot-die coated functional layers. Materials Advances, 2021, 2, 628-645.	5.4	15
107	Lowering Electrocatalytic CO ₂ Reduction Overpotential Using N-Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length. Journal of the American Chemical Society, 2021, 143, 16849-16864.	13.7	15
108	Development of Organic Dyeâ€Based Molecular Materials for Use in Fullereneâ€Free Organic Solar Cells. Chemical Record, 2019, 19, 989-1007.	5.8	14

7

#	Article	IF	CITATIONS
109	Synthesis, self-assembly, and air-stable radical anions of unconventional 6,7-bis-nitrated <i>N</i> -annulated perylene diimides. Molecular Systems Design and Engineering, 2020, 5, 1181-1185.	3.4	13
110	Control and Characterization of Organic Solar Cell Morphology Through Variable-Pressure Solvent Vapor Annealing. ACS Applied Energy Materials, 0, , .	5.1	12
111	Direct (Hetero)Arylation Polymerization of a Spirobifluorene and a Dithienyl-Diketopyrrolopyrrole Derivative: New Donor Polymers for Organic Solar Cells. Molecules, 2018, 23, 962.	3.8	12
112	Airâ€Processed Organic Photovoltaics for Outdoor and Indoor Use Based upon a Tin Oxideâ€Perylene Diimide Electron Transporting Bilayer. Advanced Materials Interfaces, 2022, 9, .	3.7	12
113	Pivotal factors in solution-processed, non-fullerene, all small-molecule organic solar cell device optimization. Organic Electronics, 2015, 27, 197-201.	2.6	11
114	Development of low band gap molecular donors with phthalimide terminal groups for use in solution processed organic solar cells. Dyes and Pigments, 2016, 132, 369-377.	3.7	11
115	Additive induced crystallization of a twisted perylene diimide dimer within a polymer matrix. Soft Matter, 2019, 15, 5138-5146.	2.7	11
116	Synthesis of aromatic imide tetramers relevant to organic electronics by direct (hetero)arylation. New Journal of Chemistry, 2019, 43, 9333-9337.	2.8	11
117	Sterically hindered phosphine and phosphonium-based activators and additives for olefin polymerization. Dalton Transactions, 2009, , 8555.	3.3	10
118	Synthesis, characterization and use of benzothioxanthene imide based dimers. Chemical Communications, 2020, 56, 10131-10134.	4.1	10
119	Uphill and downhill charge generation from charge transfer to charge separated states in organic solar cells. Journal of Materials Chemistry C, 2021, 9, 14463-14489.	5.5	10
120	Ambient Condition, Three‣ayer Slotâ€Die Coated Organic Photovoltaics with PCE of 10%. Advanced Materials Interfaces, 0, , 2101418.	3.7	10
121	Promoting photocatalytic CO ₂ reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads. Chemical Science, 2022, 13, 1049-1059.	7.4	10
122	Indeno[1,2-b]thiophene End-capped Perylene Diimide: Should the 1,6-Regioisomers be systematically considered as a byproduct?. Scientific Reports, 2020, 10, 3262.	3.3	9
123	An air-stable n-type bay-and-headland substituted bis-cyano N–H functionalized perylene diimide for printed electronics. Journal of Materials Chemistry C, 2021, 9, 13630-13634.	5.5	9
124	Light manipulation using organic semiconducting materials for enhanced photosynthesis. Cell Reports Physical Science, 2021, 2, 100390.	5.6	9
125	Tin Oxide Electron Transport Layers for Air-/Solution-Processed Conventional Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 1568-1577.	8.0	9
126	3D Nanoscale Morphology Characterization of Ternary Organic Solar Cells. Small Methods, 2022, 6, e2100916.	8.6	9

#	Article	IF	CITATIONS
127	Sideâ€chain engineering of perylene diimide dimers: Impact on morphology and photovoltaic performance. Nano Select, 2020, 1, 388-394.	3.7	8
128	Sidechain engineering of N-annulated perylene diimide molecules. New Journal of Chemistry, 2021, 45, 21001-21005.	2.8	8
129	Green Solvent-Processible N–H-Functionalized Perylene Diimide Materials for Scalable Organic Photovoltaics. ACS Applied Materials & Interfaces, 2022, 14, 3103-3110.	8.0	8
130	Exploiting direct heteroarylation polymerization homocoupling defects for the synthesis of a molecular dimer. New Journal of Chemistry, 2018, 42, 1617-1621.	2.8	7
131	Ligand-centered electrochemical processes enable CO ₂ reduction with a nickel bis(triazapentadienyl) complex. Sustainable Energy and Fuels, 2019, 3, 1172-1181.	4.9	7
132	Hafnium–phosphinimide complexes. Canadian Journal of Chemistry, 2009, 87, 1163-1172.	1.1	6
133	Development of simple hole-transporting materials for perovskite solar cells. Canadian Journal of Chemistry, 2016, 94, 352-359.	1.1	6
134	Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors. Chemical Papers, 2018, 72, 1769-1778.	2.2	6
135	Diketopyrrolopyrrole Derivatives Functionalized with Nâ€Annulated PDI and Seâ€Annulated PDI by Direct (Hetero)Arylation Methods. Asian Journal of Organic Chemistry, 2020, 9, 1291-1300.	2.7	6
136	Thiochromenocarbazole imide: a new organic dye with first utility in large area flexible electroluminescent devices. Materials Chemistry Frontiers, 2022, 6, 1912-1919.	5.9	6
137	High open circuit voltage organic solar cells based upon fullerene free bulk heterojunction active layers. Canadian Journal of Chemistry, 2014, 92, 932-939.	1.1	5
138	Thienoisoindigo end-capped molecular donors for organic photovoltaics: Effect of the central Ĩ€-conjugated connector. Dyes and Pigments, 2017, 145, 7-11.	3.7	5
139	Photodeposited Polyamorphous CuO _{<i>x</i>} Hole-Transport Layers in Organic Photovoltaics. ACS Applied Energy Materials, 2021, 4, 12900-12908.	5.1	5
140	A triazatruxene-based molecular dyad for single-component organic solar cells. Chemistry Squared, 0, 2, 3.	0.0	4
141	Optoelectronic engineering with organic dyes: utilizing squaraine and perylene diimide to access an electron-deficient molecule with near-IR absorption. Chemical Papers, 2018, 72, 1629-1634.	2.2	3
142	Impact of Ring-Fusion on the Excited State Decay Pathways of N-Annulated Perylene Diimides. Journal of Physical Chemistry C, 2021, 125, 10500-10515.	3.1	3
143	Development of Tetrameric Nâ€Annulated Perylene Diimides Using "Click―Chemistry. ChemSusChem, 2022, 15, .	6.8	3
144	Inverted P3HT:PC ₆₁ BM organic solar cells incorporating a ï€-extended squaraine dye with H- and (or) J-aggregation. Canadian Journal of Chemistry, 2018, 96, 703-711.	1.1	2

#	Article	IF	CITATIONS
145	Organic Solar Cells – Special Issue. Chemical Record, 2019, 19, 961-961.	5.8	2
146	Hybrid Tetrameric Perylene Diimide Assemblies. ChemSusChem, 2021, 14, 3511-3519.	6.8	2
147	Slotâ€Die Coated Organic UV Indicators and Filters Processed from Green Solvents. Advanced Sustainable Systems, 2022, 6, 2100055.	5.3	2
148	N â€Annulated perylene diimide dimers and tetramer nonâ€fullerene acceptors: impact of solvent processing additive on their thin film formation behavior. Journal of Chemical Technology and Biotechnology, 0, , .	3.2	2
149	Exploring Slot-Die Coating for Large Area Fullerene-Free Organic Photovoltaics. , 2018, , .		0
150	Environment friendly solvent processed, fullerene-free organic solar cells with high efficiency in air. , 2018, , .		0
151	Towards upscaling of organic photovoltaics using non-fullerene acceptors. , 2018, , .		0
152	Introduction to Organic Electronics – Ecofriendly and/or sustainable materials, processes, devices, and applications. Journal of Materials Chemistry C, 2022, 10, 2869-2869.	5.5	0