Zachary Campbell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	4D Printing of Engineered Living Materials. Advanced Functional Materials, 2022, 32, 2106843.	14.9	38
2	The space between notes: emerging roles for translationally silent ribosomes. Trends in Biochemical Sciences, 2022, 47, 477-491.	7.5	9
3	Bipartite interaction sites differentially modulate RNA-binding affinity of a protein complex essential for germline stem cell self-renewal. Nucleic Acids Research, 2022, 50, 536-548.	14.5	5
4	Global analyses of <scp>mRNA</scp> expression in human sensory neurons reveal <scp>eIF5A</scp> as a conserved target for inflammatory pain. FASEB Journal, 2022, 36, .	0.5	6
5	A compendium of validated pain genes. WIREs Mechanisms of Disease, 2022, 14, .	3.3	5
6	A Highly Selective MNK Inhibitor Rescues Deficits Associated with Fragile X Syndrome in Mice. Neurotherapeutics, 2021, 18, 624-639.	4.4	9
7	Stimuli-responsive engineered living materials. Soft Matter, 2021, 17, 785-809.	2.7	64
8	A peptide encoded within a 5′ untranslated region promotes pain sensitization in mice. Pain, 2021, 162, 1864-1875.	4.2	8
9	Intercellular Arc Signaling Regulates Vasodilation. Journal of Neuroscience, 2021, 41, 7712-7726.	3.6	12
10	A role for translational regulation by S6 kinase and a downstream target in inflammatory pain. British Journal of Pharmacology, 2021, 178, 4675-4690.	5.4	5
11	Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance. Nature Communications, 2021, 12, 6789.	12.8	18
12	Principles of mRNA control by human PUM proteins elucidated from multimodal experiments and integrative data analysis. Rna, 2020, 26, 1680-1703.	3.5	14
13	Conserved Expression of Nav1.7 and Nav1.8 Contribute to the Spontaneous and Thermally Evoked Excitability in IL-6 and NGF-Sensitized Adult Dorsal Root Ganglion Neurons In Vitro. Bioengineering, 2020, 7, 44.	3.5	9
14	Type I Interferons Act Directly on Nociceptors to Produce Pain Sensitization: Implications for Viral Infection-Induced Pain. Journal of Neuroscience, 2020, 40, 3517-3532.	3.6	62
15	Shape-morphing living composites. Science Advances, 2020, 6, eaax8582.	10.3	53
16	Molecular entrapment by RNA: an emerging tool for disrupting protein–RNA interactions in vivo. RNA Biology, 2020, 17, 417-424.	3.1	4
17	Differences between Dorsal Root and Trigeminal Ganglion Nociceptors in Mice Revealed by Translational Profiling. Journal of Neuroscience, 2019, 39, 6829-6847.	3.6	66
18	RNA control in pain: Blame it on the messenger. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1546.	6.4	12

ZACHARY CAMPBELL

#	Article	IF	CITATIONS
19	Activation of the integrated stress response in nociceptors drives methylglyoxal-induced pain. Pain, 2019, 160, 160-171.	4.2	45
20	Emerging neurotechnology for antinoceptive mechanisms and therapeutics discovery. Biosensors and Bioelectronics, 2019, 126, 679-689.	10.1	19
21	Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain. Journal of Neuroscience, 2019, 39, 393-411.	3.6	95
22	Engineering a conserved RNA regulatory protein repurposes its biological function in vivo. ELife, 2019, 8, .	6.0	13
23	A crystal structure of a collaborative RNA regulatory complex reveals mechanisms to refine target specificity. ELife, 2019, 8, .	6.0	21
24	RNA-binding proteins as targets for pain therapeutics. Neurobiology of Pain (Cambridge, Mass), 2018, 4, 2-7.	2.5	13
25	Inhibition of Poly(A)-binding protein with a synthetic RNA mimic reduces pain sensitization in mice. Nature Communications, 2018, 9, 10.	12.8	135
26	Global pairwise RNA interaction landscapes reveal core features of protein recognition. Nature Communications, 2018, 9, 2511.	12.8	29
27	Adult mouse sensory neurons on microelectrode arrays exhibit increased spontaneous and stimulus-evoked activity in the presence of interleukin-6. Journal of Neurophysiology, 2018, 120, 1374-1385.	1.8	32
28	Architecture and dynamics of overlapped RNA regulatory networks. Rna, 2017, 23, 1636-1647.	3.5	32
29	Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS). Methods, 2017, 118-119, 171-181.	3.8	24
30	Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio. ELife, 2016, 5, .	6.0	66
31	RNA regulatory networks diversified through curvature of the PUF protein scaffold. Nature Communications, 2015, 6, 8213.	12.8	56
32	Probing RNA–protein networks: biochemistry meets genomics. Trends in Biochemical Sciences, 2015, 40, 157-164.	7.5	39
33	A protein-RNA specificity code enables targeted activation of an endogenous human transcript. Nature Structural and Molecular Biology, 2014, 21, 732-738.	8.2	74
34	Biochemical Characterization of the Caenorhabditis elegans FBFâ‹CPB-1 Translational Regulation Complex Identifies Conserved Protein Interaction Hotspots. Journal of Molecular Biology, 2013, 425, 725-737.	4.2	18
35	A Proteinâ‹Protein Interaction Platform Involved in Recruitment of GLD-3 to the FBFâ‹fem-3 mRNA Complex. Journal of Molecular Biology, 2013, 425, 738-754.	4.2	16
36	Identification of a Conserved Interface between PUF and CPEB Proteins. Journal of Biological Chemistry, 2012, 287, 18854-18862.	3.4	40

ZACHARY CAMPBELL

#	Article	IF	CITATIONS
37	Patterns and plasticity in RNA-protein interactions enable recruitment of multiple proteins through a single site. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6054-6059.	7.1	43
38	Cooperativity in RNA-Protein Interactions: Global Analysis of RNA Binding Specificity. Cell Reports, 2012, 1, 570-581.	6.4	106
39	A conserved PUF–Ago–eEF1A complex attenuates translation elongation. Nature Structural and Molecular Biology, 2012, 19, 176-183.	8.2	128
40	Analysis of the Bacterial Luciferase Mobile Loop by Replica-Exchange Molecular Dynamics. Biophysical Journal, 2010, 99, 4012-4019.	0.5	20
41	Two Lysine Residues in the Bacterial Luciferase Mobile Loop Stabilize Reaction Intermediates. Journal of Biological Chemistry, 2009, 284, 32827-32834.	3.4	21
42	Fre Is the Major Flavin Reductase Supporting Bioluminescence from Vibrio harveyi Luciferase in Escherichia coli. Journal of Biological Chemistry, 2009, 284, 8322-8328.	3.4	44
43	Crystal Structure of the Bacterial Luciferase/Flavin Complex Provides Insight into the Function of the β Subunit. Biochemistry, 2009, 48, 6085-6094.	2.5	92
44	Intercellular Arc Signaling Regulates Vasodilation. SSRN Electronic Journal, 0, , .	0.4	2