Mathias Choquer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4200017/publications.pdf

Version: 2024-02-01

567281 713466 2,316 21 15 21 citations h-index g-index papers 22 22 22 2725 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Snf1 Kinase Differentially Regulates Botrytis cinerea Pathogenicity according to the Plant Host. Microorganisms, 2022, 10, 444.	3.6	5
2	The infection cushion of <i>Botrytis cinerea</i> : a fungal †weapon†of plantâ€biomass destruction. Environmental Microbiology, 2021, 23, 2293-2314.	3.8	48
3	Clathrin Is Important for Virulence Factors Delivery in the Necrotrophic Fungus Botrytis cinerea. Frontiers in Plant Science, 2021, 12, 668937.	3.6	9
4	A Similar Secretome Disturbance as a Hallmark of Non-pathogenic Botrytis cinerea ATMT-Mutants?. Frontiers in Microbiology, 2019, 10, 2829.	3.5	18
5	Genome-wide analyses of chitin synthases identify horizontal gene transfers towards bacteria and allow a robust and unifying classification into fungi. BMC Evolutionary Biology, 2016, 16, 252.	3.2	43
6	Analysis of the Molecular Dialogue Between Gray Mold (<i>Botrytis cinerea</i>) and Grapevine (<i>Vitis vinifera</i>) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Molecular Plant-Microbe Interactions, 2015, 28, 1167-1180.	2.6	73
7	Investigating the role of dicer 2 (dcr2) in gene silencing and the regulation of mycoviruses in Botrytis cinerea. Microbiology, 2014, 83, 140-148.	1.2	6
8	Disruption of Bcchs4, Bcchs6 or Bcchs7 chitin synthase genes in Botrytis cinerea and the essential role of class VI chitin synthase (Bcchs6). Fungal Genetics and Biology, 2013, 52, 1-8.	2.1	27
9	The Homeobox BcHOX8 Gene in Botrytis Cinerea Regulates Vegetative Growth and Morphology. PLoS ONE, 2012, 7, e48134.	2.5	55
10	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
11	LongSAGE gene-expression profiling of Botrytis cinerea germination suppressed by resveratrol, the major grapevine phytoalexin. Fungal Biology, 2011, 115, 815-832.	2.5	11
12	<i>Ku70</i> or <i>Ku80</i> deficiencies in the fungus <i>Botrytis cinerea</i> facilitate targeting of genes that are hard to knock out in a wild-type context. FEMS Microbiology Letters, 2008, 289, 225-232.	1.8	64
13	Sesquiterpene Synthase from the Botrydial Biosynthetic Gene Cluster of the Phytopathogen <i>Botrytis cinerea</i> . ACS Chemical Biology, 2008, 3, 791-801.	3.4	161
14	The Colletotrichum acutatum Gene Encoding a Putative pH-Responsive Transcription Regulator Is a Key Virulence Determinant During Fungal Pathogenesis on Citrus. Molecular Plant-Microbe Interactions, 2007, 20, 1149-1160.	2.6	68
15	Deletion of a MFS transporter-like gene inCercospora nicotianaereduces cercosporin toxin accumulation and fungal virulence. FEBS Letters, 2007, 581, 489-494.	2.8	103
16	<i>Botrytis cinerea</i> virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters, 2007, 277, 1-10.	1.8	392
17	Identification of two group A chitinase genes in Botrytis cinerea which are differentially induced by exogenous chitin. Mycological Research, 2007, 111, 615-625.	2.5	14
18	Botrytis cinerea virulence is drastically reduced after disruption of chitin synthase class III gene (Bcchs3a). Cellular Microbiology, 2006, 8, 1310-1321.	2.1	79

MATHIAS CHOQUER

#	Article	lF	CITATIONS
19	The CTB1 Gene Encoding a Fungal Polyketide Synthase Is Required for Cercosporin Biosynthesis and Fungal Virulence of Cercospora nicotianae. Molecular Plant-Microbe Interactions, 2005, 18, 468-476.	2.6	117
20	Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. FEBS Journal, 2004, 271, 2153-2164.	0.2	99
21	A semi-quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Current Genetics, 2003, 43, 303-309.	1.7	22