
Harry W Schroeder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4199793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and function of immunoglobulins. Journal of Allergy and Clinical Immunology, 2010, 125, S41-S52.	2.9	1,322
2	Use and interpretation of diagnostic vaccination in primary immunodeficiency: AÂworking group report of the Basic and Clinical Immunology Interest Section of the American Academy of Allergy, Asthma & Immunology. Journal of Allergy and Clinical Immunology, 2012, 130, S1-S24.	2.9	379
3	The pathogenesis of chronic lymphocytic leukemia: analysis of the antibody repertoire. Trends in Immunology, 1994, 15, 288-294.	7.5	352
4	A Genomewide Screen in Multiplex Rheumatoid Arthritis Families Suggests Genetic Overlap with Other Autoimmune Diseases. American Journal of Human Genetics, 2001, 68, 927-936.	6.2	338
5	Expressed Murine and Human CDR-H3 Intervals of Equal Length Exhibit Distinct Repertoires that Differ in their Amino Acid Composition and Predicted Range of Structures. Journal of Molecular Biology, 2003, 334, 733-749.	4.2	323
6	High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1518-1523.	7.1	279
7	Screening the genome for rheumatoid arthritis susceptibility genes: A replication study and combined analysis of 512 multicase families. Arthritis and Rheumatism, 2003, 48, 906-916.	6.7	216
8	Structure and evolution of mammalian VH families. International Immunology, 1990, 2, 41-50.	4.0	183
9	Similarity and divergence in the development and expression of the mouse and human antibody repertoires. Developmental and Comparative Immunology, 2006, 30, 119-135.	2.3	151
10	The Extended Clinical Phenotype of 26 Patients with Chronic Mucocutaneous Candidiasis due to Gain-of-Function Mutations in STAT1. Journal of Clinical Immunology, 2016, 36, 73-84.	3.8	124
11	Susceptibility Locus for IgA Deficiency and Common Variable Immunodeficiency in the HLA-DR3, -B8, -A1 Haplotypes. Molecular Medicine, 1998, 4, 72-86.	4.4	118
12	Antibody structure and the evolution of immunoglobulin V gene segments. Seminars in Immunology, 1994, 6, 347-360.	5.6	112
13	Comparison of the efficacy of IGIV-C, 10% (caprylate/chromatography) and IGIV-SD, 10% as replacement therapy in primary immune deficiency. International Immunopharmacology, 2003, 3, 1325-1333.	3.8	110
14	Development of the Expressed Ig CDR-H3 Repertoire Is Marked by Focusing of Constraints in Length, Amino Acid Use, and Charge That Are First Established in Early B Cell Progenitors. Journal of Immunology, 2005, 174, 7773-7780.	0.8	110
15	Developmental Regulation of the Human Antibody Repertoire ^a . Annals of the New York Academy of Sciences, 1995, 764, 242-260.	3.8	95
16	The human cord blood antibody repertoire. Frequent usage of the VH7 gene family. European Journal of Immunology, 1992, 22, 241-245.	2.9	93
17	Forced usage of positively charged amino acids in immunoglobulin CDR-H3 impairs B cell development and antibody production. Journal of Experimental Medicine, 2006, 203, 1567-1578.	8.5	91
18	Clinical consequences of defects in B-cell development. Journal of Allergy and Clinical Immunology, 2010, 125, 778-787.	2.9	70

HARRY W SCHROEDER

#	Article	IF	CITATIONS
19	The human immunoglobulin VH7 gene family consists of a small, polymorphic group of six to eight gene segments dispersed throughout the VHlocus. European Journal of Immunology, 1993, 23, 832-839.	2.9	63
20	Regulation and Chance in the Ontogeny of B and T Cell Antigen Receptor Repertoires. Immunologic Research, 2002, 26, 265-278.	2.9	62
21	Differences in the Composition of the Human Antibody Repertoire by B Cell Subsets in the Blood. Frontiers in Immunology, 2014, 5, 96.	4.8	62
22	The immunoglobulin kappa light chain repertoire expressed in the synovium of a patient with rheumatoid arthritis. Arthritis and Rheumatism, 1992, 35, 905-913.	6.7	61
23	Heterosubtypic Immunity to Influenza A Virus Infection Requires a Properly Diversified Antibody Repertoire. Journal of Virology, 2007, 81, 9331-9338.	3.4	58
24	Categorical selection of the antibody repertoire in splenic B cells. European Journal of Immunology, 2007, 37, 1010-1021.	2.9	58
25	Slow, programmed maturation of the immunoglobulin HCDR3 repertoire during the third trimester of fetal life. Blood, 2001, 98, 2745-2751.	1.4	54
26	Genetic Control of DH Reading Frame and Its Effect on B-Cell Development and Antigen-Specifc Antibody Production. Critical Reviews in Immunology, 2010, 30, 327-344.	0.5	52
27	The link between antibodies to OxLDL and natural protection against pneumococci depends on DH gene conservation. Journal of Experimental Medicine, 2013, 210, 875-890.	8.5	50
28	Regulation of Repertoire Development through Genetic Control of DH Reading Frame Preference. Journal of Immunology, 2008, 181, 8416-8424.	0.8	49
29	IgA Response in Preterm Neonates Shows Little Evidence of Antigen-Driven Selection. Journal of Immunology, 2012, 189, 5449-5456.	0.8	48
30	Safety, Efficacy and Pharmacokinetics of a New 10% Liquid Intravenous Immunoglobulin (IVIG) in Patients with Primary Immunodeficiency. Journal of Clinical Immunology, 2012, 32, 663-669.	3.8	48
31	Nonstereotyped Lymphoma B Cell Receptors Recognize Vimentin as a Shared Autoantigen. Journal of Immunology, 2013, 190, 4887-4898.	0.8	45
32	A Single DH Gene Segment Creates Its Own Unique CDR-H3 Repertoire and Is Sufficient for B cell Development and Immune Function. Journal of Immunology, 2005, 175, 6624-6632.	0.8	44
33	Regulation of the antibody repertoire through control of HCDR3 diversity. Vaccine, 1998, 16, 1383-1390.	3.8	43
34	Early expression of Iïµ, CD23 (FcïµRII), IL-4Rα, and IgE in the human fetus. Journal of Allergy and Clinical Immunology, 2000, 106, 911-917.	2.9	42
35	Despite extensive similarity in germline DH and JH sequence, the adult Rhesus macaque CDR-H3 repertoire differs from human. Molecular Immunology, 2005, 42, 943-955.	2.2	41
36	An Immune Defect Causing Dominant Chronic Mucocutaneous Candidiasis and Thyroid Disease Maps to Chromosome 2p in a Single Family. American Journal of Human Genetics, 2001, 69, 791-803.	6.2	40

HARRY W SCHROEDER

#	Article	IF	CITATIONS
37	The Complex Genetics of Common Variable Immunodeficiency. Journal of Investigative Medicine, 2004, 52, 90-103.	1.6	40
38	Effects of Chronic Stress and Interleukin-10 Gene Polymorphisms on Antibody Response to Tetanus Vaccine in Family Caregivers of Patients With Alzheimer's Disease. Psychosomatic Medicine, 2007, 69, 551-559.	2.0	31
39	The sequences encoded by immunoglobulin diversity (D _H) gene segments play key roles in controlling Bâ€cell development, antigenâ€binding site diversity, and antibody production. Immunological Reviews, 2018, 284, 106-119.	6.0	31
40	Preferential Use of DH Reading Frame 2 Alters B Cell Development and Antigen-Specific Antibody Production. Journal of Immunology, 2008, 181, 8409-8415.	0.8	29
41	VpreB serves as an invariant surrogate antigen for selecting immunoglobulin antigen-binding sites. Science Immunology, 2016, 1, .	11.9	29
42	Immune Responses to pneumococcal vaccines in children and adults: Rationale for age-specific vaccination. , 2012, 3, 51-67.		29
43	Ribosome binding site analysis of ovalbumin messenger ribonucleic acid. Biochemistry, 1979, 18, 5798-5808.	2.5	28
44	Nucleotide sequence of the intron of the germline humanximmunoglobulin gene connecting the J and C regions reveals a matrix association region (MAR) next to the enhancer. Nucleic Acids Research, 1992, 20, 4929-4930.	14.5	28
45	Absorbance summation: A novel approach for analyzing high-throughput ELISA data in the absence of a standard. PLoS ONE, 2018, 13, e0198528.	2.5	27
46	Violation of an Evolutionarily Conserved Immunoglobulin Diversity Gene Sequence Preference Promotes Production of dsDNA-Specific IgG Antibodies. PLoS ONE, 2015, 10, e0118171.	2.5	27
47	Recirculating bone marrow <scp>B</scp> cells in <scp>C</scp> 57 <scp>BL</scp> /6 mice are more tolerant of highly hydrophobic and highly charged <scp>CDR</scp> â€ <scp>H</scp> 3s than those in <scp>BALB</scp> /c mice. European Journal of Immunology, 2013, 43, 629-640.	2.9	25
48	The Rhesus monkey immunoglobulin IGHD and IGHJ germline repertoire. Immunogenetics, 2002, 54, 240-250.	2.4	24
49	Analysis of immunoglobulin gamma heavy chain expression in synovial tissue of a patient with rheumatoid arthritis. Arthritis and Rheumatism, 1993, 36, 631-641.	6.7	23
50	CD8 T-cell immune phenotype of successful aging. Mechanisms of Ageing and Development, 2006, 127, 231-239.	4.6	22
51	The Peritoneal Cavity B-2 Antibody Repertoire Appears To Reflect Many of the Same Selective Pressures That Shape the B-1a and B-1b Repertoires. Journal of Immunology, 2010, 185, 6085-6095.	0.8	22
52	A previously unrecognized 22q13.2 microdeletion syndrome that encompasses <i>TCF20</i> and <i>TNFRSF13C</i> . American Journal of Medical Genetics, Part A, 2018, 176, 2791-2797.	1.2	22
53	Peripheral CD4 T follicular cells induced by a conjugated pneumococcal vaccine correlate with enhanced opsonophagocytic antibody responses in younger individuals. Vaccine, 2020, 38, 1778-1786.	3.8	22
54	Clonal Progression during the T Cell-Dependent B Cell Antibody Response Depends on the Immunoglobulin DH Gene Segment Repertoire. Frontiers in Immunology, 2014, 5, 385.	4.8	21

#	Article	IF	CITATIONS
55	A rheumatoid factor from a normal individual encoded by VH2 and VkII gene segments. Arthritis and Rheumatism, 1992, 35, 900-904.	6.7	20
56	Adult lupus-prone MRL/MpJ2+ mice express a primary antibody repertoire that differs in CDR-H3 length distribution and hydrophobicity from that expressed in the C3H parental strain. Molecular Immunology, 2005, 42, 789-798.	2.2	20
57	Structure—Function Studies of Human Monoclonal Antibodies to Pneumococcus Type 3 Polysaccharide. Annals of the New York Academy of Sciences, 1995, 764, 370-373.	3.8	20
58	Clonally-related Immunoglobulin VH Domains and Nonrandom Use of DH Gene Segments in Rheumatoid Arthritis Synovium. Molecular Medicine, 1998, 4, 240-257.	4.4	19
59	The Evolution and Development of the Antibody Repertoire. Frontiers in Immunology, 2015, 6, 33.	4.8	18
60	HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence. Immunogenetics, 2016, 68, 145-155.	2.4	18
61	Increased frequency of HLA-B44 in recurrent sinopulmonary infections (RESPI). Clinical Immunology, 2006, 119, 346-350.	3.2	17
62	Genetics of IgA Deficiency and Common Variable Immunodeficiency. Clinical Reviews in Allergy and Immunology, 2000, 19, 127-140.	6.5	15
63	The CDR-H3 Repertoire from TdT-Deficient Adult Bone Marrow Is a Close, but Not Exact, Homologue of the CDR-H3 Repertoire from Perinatal Liver. Journal of Immunology, 2010, 185, 6075-6084.	0.8	13
64	Analysis of TACI mutations in CVID & RESPI patients who have inherited HLA B*44 or HLA*B8. BMC Medical Genetics, 2009, 10, 100.	2.1	11
65	DH and JH usage in murine fetal liver mirrors that of human fetal liver. Immunogenetics, 2010, 62, 653-666.	2.4	11
66	Absence of N addition facilitates B cell development, but impairs immune responses. Immunogenetics, 2011, 63, 599-609.	2.4	10
67	Constraints on the Hydropathicity and Sequence Composition of HCDR3 are Conserved Across Evolution. , 2002, , 43-67.		10
68	3 Normal B lymphocyte differentiation. Best Practice and Research: Clinical Haematology, 1993, 6, 785-806.	1.1	9
69	Clues to the etiology of autoimmune diseases through analysis of immunoglobulin genes. Arthritis Research, 2002, 4, 80.	2.0	9
70	Limiting CDR-H3 Diversity Abrogates the Antibody Response to the Bacterial Polysaccharide α 1→3 Dextran. Journal of Immunology, 2011, 187, 879-886.	0.8	9
71	Immunoglobulin class switching appears to be regulated by <scp>B</scp> â€cell antigen receptorâ€specific <scp>T</scp> â€cell action. European Journal of Immunology, 2012, 42, 1016-1029.	2.9	9
72	Analysis of Immunoglobulin Gamma Heavy Chains from Rheumatoid Arthritis Synovium Evidence of Antigenâ€Driven Selection. Annals of the New York Academy of Sciences, 1995, 764, 450-460.	3.8	8

72 Inter role of evolutionarily conserved germä Gline Diculus H (skub) asquence in BAG4 cell development and () 0.0 6 74 Development and Function of B Cell Subsets, 2015, 1951, 1952, 1952, 48-56. 0 8 75 Kalter cell immunologbulur silve receptors are associated with common variable immune deficiency 2.9 8 76 CDR3 Fingerprinting of Immunologbulur Subsets, 2015, 1951, 1951, 1951, 1951, 1951, 1953, 195	#	Article	IF	CITATIONS
75 Killer cell immunoglobulu-like receptors are associated with common variable immune deficiency 2.9 8 76 CDR3 Fingerprinting of Immunoglobulin Kappa Light Chains Expressed in Houmatoid Arthrits Evidence of Antigenic Selection of Dysregulation of Cene Rearrangement in B Cells. Annals of the New York 3.8 7 77 Antibody Repertoire in a Mouse with a Simplified Dosub Holpub Locus: The D&GLimited Mouse. Annals of the New York Academy of Sciences, 2003, 987, 262-265. 3.8 7 78 Clonal Hematopolesis and Acquired Thalassemia in Common Variable Immunodeficiency. Molecular 4.4 6 79 Marriage, divorce, and promiscuity in human B cells. Nature Immunology, 2000, 1, 187-188. 14.5 6 80 Becell numbers in the blood of patients with non-HLA*B4 common variable immunodeficiency. Annals of Allergy, Asthma and Immunology, 2007, 98, 163-167. 1.0 6 81 The Clobal SelfReactivity Profile of the Natural Anthoby Repertore Is Largely Independent of Cernine DH Sequence. Frontiers in Immunology, 2016, 7, 296. 4.8 6 82 Disruption of the preB Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 4.8 6 83 Phenotype in a Murine Model of Allergic Arrway Inflammation. International Archives of Allergy and Instrumology, 2011, 156, 247-258. 5 84 Becell differentitation In humans , 1995, 3-31. 5	73		3.8	8
70 pathogenesis, Journal of Allergy and Clinical Immunology, 2016, 138, 1495-1498. 2-9 8 71 CDR3 Fingerprinting of Immunoglobulin Kappa Light Chains Expressed in Biscumatold Arthritis Evidence of Antigenic Selection or Dysregulation of Cene Rearrangement in B Cells. Annals of the New York Academy of Sciences, 1997, 815, 423-426. 3.8 7 72 Antibody Repertoire in a Mouse with a Simplified D csub:H c/sub: Locus: The D&ELimited Mouse. Annals of the New York Academy of Sciences, 2003, 957, 262-265. 3.8 7 78 Clonal Hematopolesis and Acquired Thalassemila in Common Variable Immunodeficiency. Molecular 4.4 6 79 Marciage, divorce, and promiscuity in human B cells. Nature Immunology, 2000, 1, 187-188. 14.5 6 80 B-cell numbers in the blood of patients with non-HLA*B8 or non-HLA*B44 common variable immunodeficiency. Annals of Allergy, Astima and Immunology, 2007, 98, 163-167. 1.0 6 81 The Clobal Self-Reactivity Profile of the Natural Antibody Repertoire is Largely Independent of Cermine DH Sequence. Frontiers in Immunology, 2015, 7, 296. 4.8 6 82 Discuption of the preB Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 2011, 136, 247-238. 5 83 A Single D&Htsub>: H&It-glub > Gene Segment is Sufficient for the Establishment of an Asthma Immunology, 2011, 136, 247-238. 5 84 B-cell di	74	Development and Function of B Cell Subsets. , 2015, , 99-119.		8
76 of Antigenic Selection or Dysregilation of Cene Rearrangement in B Cells. Annals of the New York 3.8 7 77 Antibody Repertoice, in a Mouse with a Simplified D cubb H (subb Locus: The Dä€Limited Mouse. Annals of 3.8 7 78 Clonal Hematopoiesis and Acquired Thalassemia in Common Variable Immunodeficiency. Molecular 4.4 6 79 Marriage, divorce, and promisculty in human B cells. Nature Immunology, 2000, 1, 187-188. 14.5 6 80 B-cell numbers in the blood of patients with non-HLA*BB or non-HLA*B44 common variable 1.0 6 81 The Clobal Self-Reactivity Profile of the Natural Antibody Repertoire is Largely Independent of 4.8 6 82 Disruption of the preB Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 2015, 7, 296. 4.8 6 83 Phenotype in a Munite Model of Allergic Airway Inflammation. International Archives of Allergy and Immunology, 2011, 156, 247-258. 5 84 B-cell differentiation in humans, 1995, 3-31. 5 5 85 In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Artibody Repericier by Frontiers in Immunology, 2011, 156, 247-258. 4.8 4 86 In situ hybridization analysis of Immunoglobulin heavy chain variable gene expression with family specific o	75		2.9	8
17 the New York Academy of Sciences, 2003, 987, 262-265. 0.5 7 78 Clonal Hematopoiesis and Acquired Thalassemia in Common Variable Immunodeficiency. Molecular 4.4 6 79 Marriage, divorce, and promiscuity in human B cells. Nature Immunology, 2000, 1, 187-188. 14.5 0 80 B-cell numbers in the blood of patients with non-HLA*B8 or non-HLA*B44 common variable immunodeficiency. Annals of Allergy, Asthma and Immunology, 2007, 98, 163-167. 1.0 6 81 The Clobal SalF.Reactivity Profile of the Natural Antibody Repertoire Is Largely Independent of Cermline DH Sequence. Frontiers in Immunology, 2016, 7, 296. 4.8 6 82 Disruption of the preB Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 2011, 156, 247-258. 4.8 6 83 A Single D&Itsub>H&It/sub> Cene Segment Is Sufficient for the Establishment of an Asthma Phenotype in a Murine Model of Allergic Airway Inflammation. International Archives of Allergy and Immunology, 2011, 156, 247-258. 5 84 B-cell differentiation in humans , 1995, , 3-31. 5 85 In stu hybridization analysis of Immunoglobulin heavy chain variable gene expression with family septific oligonucleotide probes. Journal of Immunology, 2018, 9, 120. 4.8 4 86 Antibody Repertoire by Enriching for CDR:H3 Y101. Frontiers in Immunology, 2018, 9, 120. 4.8	76	of Antigenic Selection or Dysregulation of Gene Rearrangement in B Cells. Annals of the New York	3.8	7
Ya Medicine, 1994, 1, 56-61. 4.4 6 Ya Marriage, divorce, and promiscuity in human B cells. Nature Immunology, 2000, 1, 187-188. 14.5 6 So B-cell numbers in the blood of patients with non-HLA*B8 or non-HLA*B44 common variable immunodeficiency. Annals of Allergy, Asthma and Immunology, 2007, 98, 163-167. 1.0 6 B1 Cermline DH Sequence. Frontiers in Immunology, 2016, 7, 296. 4.8 6 B2 Disruption of the preB Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 2019, 10, 2063. 4.8 6 B3 Phenotype In a Murine Model of Allerge Airway Inflammation. International Archives of Allergy and Immunology, 2011, 156, 247-258. 5 B4 B-cell differentiation in humans., 1995, , 3-31. 5 B5 In situ hybridization analysis of Immunoglobulin heavy chain variable gene expression with family specific oligonucleotide probes. Journal of Immunologidal Methods, 1998, 218, 31-52. 1.4 4 B6 In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Reperiore by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 B7 Preimmune Control of the Variance of TCR CDR-B3: Insights Cained From Germline Replacement of a CCRDP Cene Segment. With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079. 4.8 4	77		3.8	7
80 B-cell numbers in the blood of patients with non-HLA*B8 or non-HLA*B44 common variable immunodeficiency. Annals of Allergy, Asthma and Immunology, 2007, 98, 163-167. 1.0 6 81 The Global Self-Reactivity Profile of the Natural Antibody Repertoire Is Largely Independent of Germline DH Sequence. Frontiers in Immunology, 2016, 7, 296. 4.8 6 82 Disruption of the pre8 Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 2019, 10, 2063. 4.8 6 83 Phenotype in a Murine Model of Allergic Airway Inflammation. International Archives of Allergy and Immunology, 2011, 156, 247-258. 5 84 B-cell differentiation in humans., 1995, , 3-31. 5 85 In situ hybridization analysis of immunoglobulin heavy chain variable gene expression with family specific oligonucleotide probes. Journal of Immunological Methods, 1998, 218, 31-52. 1.4 4 86 In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2018, 9, 120. 4.8 4 87 Preinmune Control of the Variance of TCR CDR-B3: Insights Gained From Germline Replacement of a CCR DP3 'Control of the Variance of TCR CDR-B3: Insights Gained From Germline Replacement of a CR DP3 'D a 'D D mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 4.8 4.8 4 88 Atterations in B cell development	78	Clonal Hematopoiesis and Acquired Thalassemia in Common Variable Immunodeficiency. Molecular Medicine, 1994, 1, 56-61.	4.4	6
80 immunodeficiency. Annals of Allergy, Asthma and Immunology, 2007, 98, 163-167. 1:0 6 81 The Global Self-Reactivity Profile of the Natural Antibody Repertoire Is Largely Independent of Germline DH Sequence. Frontiers in Immunology, 2016, 7, 296. 4.8 6 82 Disruption of the preB Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 2019, 10, 2063. 4.8 6 83 A Single D _H Gene Segment Is Sufficient for the Establishment of an Asthma Phenotype in a Muñne Model of Allergic Airway Inflammation. International Archives of Allergy and Immunology, 2011, 156, 247-258. 5 84 B-cell differentiation in humans., 1995, , 3-31. 5 85 In situ hybridization analysis of immunoglobulin heavy chain variable gene expression with family specific oligonucleotide probes. Journal of Immunological Methods, 1998, 218, 31-52. 1.4 4 86 In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 87 Pretimmune Control of the Variance of TCR CDR-B3: Insights Gained From Cermline Replacement of a TCR DI ² Gene Segment With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 88 CS7BL/6 ^{TD} A ³ 'ID mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 42.61. 3 </td <td>79</td> <td>Marriage, divorce, and promiscuity in human B cells. Nature Immunology, 2000, 1, 187-188.</td> <td>14.5</td> <td>6</td>	79	Marriage, divorce, and promiscuity in human B cells. Nature Immunology, 2000, 1, 187-188.	14.5	6
S1 Germline DH Sequence. Frontiers in Immunology, 2016, 7, 296. 4.8 6 82 Disruption of the preB Cell Receptor Complex Leads to Decreased Bone Mass. Frontiers in Immunology, 2019, 10, 2063. 4.8 6 83 A Single D _H Gene Segment Is Sufficient for the Establishment of an Asthma Phenotype in a Murine Model of Allergic Airway Inflammation. International Archives of Allergy and Immunology, 2011, 156, 247-258. 2.1 5 84 B-cell differentiation in humans., 1995, , 3-31. 5 85 In situ hybridization analysis of immunoglobulin heavy chain variable gene expression with family specific oligonucleotide probes. Journal of Immunological Methods, 1998, 218, 31-52. 1.4 4 86 In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2018, 9, 120. 4.8 4 87 Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Cermline Replacement of a TCR Di ² Gene Segment. With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 88 C577BL/6 I ⁰ DB ⁻¹ CD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 42-51. 3	80		1.0	6
82 2019, 10, 2063. 4.8 6 83 A Single D&Itsub>H&It/sub> Gene Segment Is Sufficient for the Establishment of an Asthma Phenotype in a Murine Model of Allergic Airway Inflammation. International Archives of Allergy and Immunology, 2011, 156, 247-258. 2.1 5 84 B-cell differentiation in humans., 1995,, 3-31. 5 85 In situ hybridization analysis of immunoglobulin heavy chain variable gene expression with family specific oligonucleotide probes. Journal of Immunological Methods, 1998, 218, 31-52. 1.4 4 86 In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2018, 9, 120. 4.8 4 87 Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Germline Replacement of a TCR DI ² Gene Segment With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 88 Alterations in B cell development, CDR-H3 repertoire and dsDNA-binding antibody production among CS7BL/6 ^{TD} 0 ^a (D mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 42-51. 3.6 3	81		4.8	6
83 Phenotype in a Murine Model of Allergic Airway Inflammation. International Archives of Allergy and 2.1 5 84 B-cell differentiation in humans. , 1995, , 3-31. 5 85 In situ hybridization analysis of immunoglobulin heavy chain variable gene expression with family specific oligonucleotide probes. Journal of Immunological Methods, 1998, 218, 31-52. 1.4 4 86 In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2018, 9, 120. 4.8 4 87 Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Cermline Replacement of a TCR DI ² Gene Segment With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 88 Alterations in B cell development, CDR-H3 repertoire and dsDNA-binding antibody production among C57BL/6 I°Dâ riD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 42-51. 3	82		4.8	6
85In situ hybridization analysis of immunoglobulin heavy chain variable gene expression with family specific oligonucleotide probes. Journal of Immunological Methods, 1998, 218, 31-52.1.4486In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2018, 9, 120.4.8487Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Cermline Replacement of a TCR Dî ² Gene Segment With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079.4.8488Alterations in B cell development, CDR-H3 repertoire and dsDNA-binding antibody production among C57BL/6 l'Dâ'iD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 42-51.2.63	83	Phenotype in a Murine Model of Allergic Airway Inflammation. International Archives of Allergy and	2.1	5
85 specific oligonucleotide probes. Journal of Immunological Methods, 1998, 218, 31-52. 1.4 4 86 In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2018, 9, 120. 4.8 4 87 Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Germline Replacement of a TCR DÎ ² Gene Segment With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 88 Alterations in B cell development, CDR-H3 repertoire and dsDNA-binding antibody production among C57BL/6 ΔDâ"iD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 42-51. 2.6 3	84	B-cell differentiation in humans. , 1995, , 3-31.		5
86 Antibody Repertoire by Enriching for CDR-H3 Y101. Frontiers in Immunology, 2018, 9, 120. 4.8 4 87 Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Germline Replacement of a TCR DÎ ² Gene Segment With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 88 Alterations in B cell development, CDR-H3 repertoire and dsDNA-binding antibody production among C57BL/6 Î'Dâ^'iD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 42-51. 2.6 3	85		1.4	4
87 TCR DÎ ² Gene Segment With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079. 4.8 4 Alterations in B cell development, CDR-H3 repertoire and dsDNA-binding antibody production among 88 C57BL/6 Î'Dâ^'iD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 2.6 3 42-51. 42-51. 42-51. 4.8	86		4.8	4
88 C57BL/6 ΔDâ^'iD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50, 2.6 3 42-51.	87	Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Germline Replacement of a TCR DÎ ² Gene Segment With an Ig DH Gene Segment. Frontiers in Immunology, 2020, 11, 2079.	4.8	4
89 Primary antibody deficiencies. , 2008, , 513-529. 3	88	C57BL/6 ΔDâ^'iD mice congenic for the lupus susceptibility loci sle1, sle2 or sle3. Autoimmunity, 2017, 50,	2.6	3
	89	Primary antibody deficiencies. , 2008, , 513-529.		3

90 Antigen receptor genes, gene products, and co-receptors. , 2008, , 53-77.

2

#	Article	IF	CITATIONS
91	A role for maternal IgG in protecting infants from allergen-specific IgE sensitization. Journal of Allergy and Clinical Immunology, 2019, 144, 410-412.	2.9	2
92	Recognition reversal in a spineless scrounger. Nature Immunology, 2006, 7, 797-798.	14.5	1
93	B-cell development and differentiation. , 2008, , 113-125.		1
94	Primary Antibody Deficiencies. , 2019, , 471-487.e1.		1
95	Use of FEF25–75% to Guide IgG Dosing to Protect Pulmonary Function in CVID. Journal of Clinical Immunology, 2020, 40, 310-320.	3.8	1
96	Replacement of TCR Dβ With Immunoglobulin DH DSP2.3 Imposes a Tyrosine-Enriched TCR Repertoire and Adversely Affects T Cell Development. Frontiers in Immunology, 2020, 11, 573413.	4.8	1
97	Attenuated asthma phenotype in mice with a fetal-like antigen receptor repertoire. Scientific Reports, 2021, 11, 14199.	3.3	1
98	Immunoglobulin Gene Expression in Rheumatoid Arthritis. , 1995, 47, 23-35.		1
99	<i>In Situ</i> Hybridization Analysis of Immunoglobulin V _H Gene Family Expression in Rheumatoid Arthritis. Annals of the New York Academy of Sciences, 1995, 764, 453-456.	3.8	0
100	B-cell development and differentiation. , 2013, , 90-101.		0
101	Susceptibility Loci in C57BL/6 sle1, sle2 and sle3 Contain Genes that Alter Peripheral Selection of the CDR-H3 Sequences Enriched for Arginine. Journal of Clinical & Cellular Immunology, 2018, 09, .	1.5	0
102	Mixing the Old with the New: Drug Repurposing for Immune Deficiency in the Era of Precision Medicine and Pediatric Genomics. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 2168-2169.	3.8	0
103	Antigen Receptor Genes, Gene Products, and Coreceptors. , 2019, , 55-77.e1.		0
104	The Many Gaps in Our Knowledge of the Etiology, Pathogenesis, Complications, and Prognosis of Hypogammaglobulinemia and Common Variable Immune Deficiency. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 1285-1286.	3.8	0
105	TCR DÎ ² sequence dictates the amino acid composition of CDRÎ ² 3 in mature T cells. FASEB Journal, 2008, 22, 849.5.	0.5	0
106	Antigen receptor genes, gene products, and co-receptors. , 2013, , 47-67.		0
107	Primary antibody deficiencies. , 2013, , 421-436.		0