David J Norris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4198567/publications.pdf

Version: 2024-02-01

6818 19608 34,593 169 61 155 citations h-index g-index papers 177 177 177 29886 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polarization-based colour tuning of mixed colloidal quantum-dot thin films using direct patterning. Nanoscale, 2022, 14, 4929-4934.	2.8	5
2	Nanophotonic Approach to Study Excited-State Dynamics in Semiconductor Nanocrystals. Journal of Physical Chemistry Letters, 2022, 13, 4145-4151.	2.1	1
3	Electrically tunable quantum confinement of neutral excitons. Nature, 2022, 606, 298-304.	13.7	25
4	The Potential of Combining Thermal Scanning Probes and Phaseâ€Change Materials for Tunable Metasurfaces. Advanced Optical Materials, 2021, 9, 2001243.	3.6	19
5	Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals. Journal of the American Chemical Society, 2021, 143, 2037-2048.	6.6	56
6	Determining the Structure–Property Relationships of Quasi-Two-Dimensional Semiconductor Nanoplatelets. Journal of Physical Chemistry C, 2021, 125, 4820-4827.	1.5	7
7	Understanding Discrete Growth in Semiconductor Nanocrystals: Nanoplatelets and Magic-Sized Clusters. Accounts of Chemical Research, 2021, 54, 1545-1554.	7.6	42
8	Phase transitions in germanium telluride nanoparticle phase-change materials studied by temperature-resolved x-ray diffraction. Journal of Applied Physics, 2021, 129, 095102.	1,1	2
9	Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons. ACS Nano, 2021, 15, 9935-9944.	7. 3	4
10	Nanopatterning of Phase-Change Material Thin Films For Tunable Photonics. , 2021, , .		0
11	Core/Shell Magic-Sized CdSe Nanocrystals. Nano Letters, 2021, 21, 7651-7658.	4.5	16
12	Nanoscale Bouligand Multilayers: Giant Circular Dichroism of Helical Assemblies of Plasmonic 1D Nano-Objects. ACS Nano, 2021, 15, 13653-13661.	7.3	20
13	Freeform Electronic and Photonic Landscapes in Hexagonal Boron Nitride. Nano Letters, 2021, 21, 8175-8181.	4.5	8
14	Measurement of Raman Optical Activity with High-Frequency Polarization Modulation. Journal of Physical Chemistry A, 2021, 125, 8132-8139.	1.1	7
15	The Potential of Combining Thermal Scanning Probes and Phaseâ€Change Materials for Tunable Metasurfaces (Advanced Optical Materials 2/2021). Advanced Optical Materials, 2021, 9, 2170008.	3.6	1
16	Active Mode Switching in Plasmonic Microlasers by Spatial Control of Optical Gain. Nano Letters, 2021, 21, 8952-8959.	4.5	2
17	Single-Pulse Measurement of Orbital Angular Momentum Generated by Microring Lasers. ACS Nano, 2021, , .	7.3	4
18	Inverse design and realization of an optimized photonic multilayer for thermophotovoltaics. OSA	1.8	2

#	Article	IF	Citations
19	Unraveling the Origin of the Long Fluorescence Decay Component of Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2020, 14, 14939-14946.	7.3	22
20	Template Stripping of Perovskite Thin Films for Dry Interfacing and Surface Structuring. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26601-26606.	4.0	2
21	Optical Properties of Amorphous and Crystalline GeTe Nanoparticle Thin Films: A Phase-Change Material for Tunable Photonics. ACS Applied Nano Materials, 2020, 3, 4314-4320.	2.4	20
22	Optical Fourier surfaces. Nature, 2020, 582, 506-510.	13.7	75
23	Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers. ACS Nano, 2020, 14, 5223-5232.	7.3	46
24	Experimental Evidence for Two-Dimensional Ostwald Ripening in Semiconductor Nanoplatelets. Chemistry of Materials, 2020, 32, 3312-3319.	3.2	25
25	Anisotropic Magnetic Resonance in Random Nanocrystal Quantum Dot Ensembles. ACS Omega, 2020, 5, 11333-11341.	1.6	2
26	3D electrohydrodynamic printing and characterisation of highly conductive gold nanowalls. Nanoscale, 2020, 12, 20158-20164.	2.8	15
27	Trion Emission Dominates the Low-Temperature Photoluminescence of CdSe Nanoplatelets. Nano Letters, 2020, 20, 5814-5820.	4.5	27
28	Defect-Tolerant Plasmonic Elliptical Resonators for Long-Range Energy Transfer. ACS Nano, 2019, 13, 9048-9056.	7.3	4
29	Compositional Grading for Efficient and Narrowband Emission in CdSe-Based Core/Shell Nanoplatelets. Chemistry of Materials, 2019, 31, 9567-9578.	3.2	59
30	Observation of Electron Shakeup in CdSe/CdS Core/Shell Nanoplatelets. Nano Letters, 2019, 19, 8495-8502.	4.5	34
31	Microsecond Blinking Events in the Fluorescence of Colloidal Quantum Dots Revealed by Correlation Analysis on Preselected Photons. Journal of Physical Chemistry Letters, 2019, 10, 3732-3738.	2.1	22
32	Multispectral quantum-dot photodetectors. Nature Photonics, 2019, 13, 230-232.	15.6	14
33	Direct hot-carrier transfer in plasmonic catalysis. Faraday Discussions, 2019, 214, 189-197.	1.6	43
34	Plasmon-Induced Direct Hot-Carrier Transfer at Metal–Acceptor Interfaces. ACS Nano, 2019, 13, 3188-3195.	7.3	75
35	Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters, 2019, 19, 108-115.	4.5	23
36	Colloidal-Quantum-Dot Ring Lasers with Active Color Control. Nano Letters, 2018, 18, 1028-1034.	4.5	70

#	Article	lF	CITATIONS
37	Bright triplet excitons in caesium lead halide perovskites. Nature, 2018, 553, 189-193.	13.7	716
38	Chiral Light Design and Detection Inspired by Optical Antenna Theory. Nano Letters, 2018, 18, 4633-4640.	4.5	73
39	Identifying reactive organo-selenium precursors in the synthesis of CdSe nanoplatelets. Chemical Communications, 2018, 54, 11789-11792.	2.2	15
40	Two-Dimensional Drexhage Experiment for Electric- and Magnetic-Dipole Sources on Plasmonic Interfaces. Physical Review Letters, 2018, 121, 113601.	2.9	14
41	Three-Dimensional Enantiomeric Recognition of Optically Trapped Single Chiral Nanoparticles. Physical Review Letters, 2018, 121, 023902.	2.9	27
42	Chiral Plasmonic Tips and Colloidal Nanoparticles. , 2018, , .		0
43	Direct Patterning of Colloidal Quantum-Dot Thin Films for Enhanced and Spectrally Selective Out-Coupling of Emission. Nano Letters, 2017, 17, 1319-1325.	4.5	68
44	An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets. Nature Materials, 2017, 16, 743-748.	13.3	193
45	Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 40180-40186.	4.0	60
46	Ripening of Semiconductor Nanoplatelets. Nano Letters, 2017, 17, 6870-6877.	4.5	56
47	Tailoring Energy Transfer from Hot Electrons to Adsorbate Vibrations for Plasmon-Enhanced Catalysis. ACS Catalysis, 2017, 7, 8343-8350.	5.5	22
48	A customizable class of colloidal-quantum-dot metallic lasers and amplifiers. Science Advances, 2017, 3, e1700688.	4.7	50
49	High-temperature growth of thick-shell CdSe/CdS core/shell nanoplatelets. Chemical Communications, 2017, 53, 9938-9941.	2.2	75
50	Polarization Multiplexing of Fluorescent Emission Using Multiresonant Plasmonic Antennas. ACS Nano, 2017, 11, 12167-12173.	7.3	14
51	Correction to Observation of Thermal Beaming from Tungsten and Molybdenum Bull's Eyes. ACS Photonics, 2016, 3, 2003-2003.	3.2	0
52	Full-Spectrum Flexible Color Printing at the Diffraction Limit. ACS Photonics, 2016, 3, 754-757.	3.2	29
53	Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing. Nano Letters, 2016, 16, 7849-7856.	4.5	54
54	Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields. ACS Photonics, 2016, 3, 1619-1625.	3.2	89

#	Article	IF	CITATIONS
55	Europium-Doped NaYF ₄ Nanocrystals as Probes for the Electric and Magnetic Local Density of Optical States throughout the Visible Spectral Range. Nano Letters, 2016, 16, 7254-7260.	4.5	57
56	Confocal reference free traction force microscopy. Nature Communications, 2016, 7, 12814.	5.8	109
57	Charge Trapping Defects in CdSe Nanocrystal Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 13763-13770.	1.5	41
58	Printable Nanoscopic Metamaterial Absorbers and Images with Diffraction-Limited Resolution. ACS Applied Materials & Diffraction (1990). 11697.	4.0	30
59	Charge effects and nanoparticle pattern formation in electrohydrodynamic NanoDrip printing of colloids. Nanoscale, 2016, 8, 6028-6034.	2.8	25
60	Observation of Thermal Beaming from Tungsten and Molybdenum Bull's Eyes. ACS Photonics, 2016, 3, 494-500.	3.2	63
61	Substrate Selection for Full Exploitation of Organic Semiconductor Films: Epitaxial Rubrene on βâ€Alanine Single Crystals. Advanced Materials Interfaces, 2015, 2, 1500423.	1.9	14
62	Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics, 2015, 2, 326-333.	3.2	818
63	Localization of Ag Dopant Atoms in CdSe Nanocrystals by Reverse Monte Carlo Analysis of EXAFS Spectra. Journal of Physical Chemistry C, 2015, 119, 18762-18772.	1.5	36
64	Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates. ACS Nano, 2015, 9, 10647-10654.	7.3	79
65	Low-temperature enhancement of plasmonic performance in silver films. Optical Materials Express, 2015, 5, 1147.	1.6	35
66	Ultraviolet Plasmonic Chirality from Colloidal Aluminum Nanoparticles Exhibiting Chargeâ€Selective Protein Detection. Advanced Materials, 2015, 27, 6244-6250.	11.1	63
67	Wedge Waveguides and Resonators for Quantum Plasmonics. Nano Letters, 2015, 15, 6267-6275.	4.5	107
68	Back-reflector design in thin-film silicon solar cells by rigorous 3D light propagation modeling. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2014, 33, 1282-1295.	0.5	1
69	Solid-Phase Flexibility in Ag ₂ Se Semiconductor Nanocrystals. Nano Letters, 2014, 14, 115-121.	4.5	51
70	Broadband Up-Conversion at Subsolar Irradiance: Triplet–Triplet Annihilation Boosted by Fluorescent Semiconductor Nanocrystals. Nano Letters, 2014, 14, 6644-6650.	4.5	62
71	Near-Field Light Design with Colloidal Quantum Dots for Photonics and Plasmonics. Nano Letters, 2014, 14, 5827-5833.	4.5	70
72	Complex Chiral Colloids and Surfaces via High-Index Off-Cut Silicon. Nano Letters, 2014, 14, 2934-2940.	4.5	53

#	Article	IF	Citations
73	Microscopic Theory of Cation Exchange in CdSe Nanocrystals. Physical Review Letters, 2014, 113, 156803.	2.9	64
74	Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Scientific Reports, 2013, 3, 1857.	1.6	43
75	Fabrication of Smooth Patterned Structures of Refractory Metals, Semiconductors, and Oxides via Template Stripping. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9701-9708.	4.0	27
76	Imaging Impurities in Semiconductor Nanostructures. Chemistry of Materials, 2013, 25, 1332-1350.	3.2	24
77	Chiral Plasmonic Films and Nanoparticles. , 2013, , .		0
78	Influence of Silver Doping on Electron Transport in Thin Films of PbSe Nanocrystals. Advanced Materials, 2013, 25, 725-731.	11.1	51
79	Improved dielectric functions in metallic films obtained via template stripping. Applied Physics Letters, 2012, 100, 081105.	1.5	25
80	Synthesis and characterization of Al- and In-doped CdSe nanocrystals. Journal of Materials Chemistry, 2012, 22, 6335.	6.7	37
81	Getting Moore from Solar Cells. Science, 2012, 338, 625-626.	6.0	28
82	Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. Journal of Applied Physics, 2012, 111 , .	1.1	221
83	Electronic Impurity Doping in CdSe Nanocrystals. Nano Letters, 2012, 12, 2587-2594.	4.5	335
84	Quantum confinement in silver selenide semiconductor nanocrystals. Chemical Communications, 2012, 48, 5458.	2.2	92
85	Linewidthâ€Optimized Extraordinary Optical Transmission in Water with Templateâ€Stripped Metallic Nanohole Arrays. Advanced Functional Materials, 2012, 22, 4439-4446.	7.8	49
86	Singleâ€Crystalline Silver Films for Plasmonics. Advanced Materials, 2012, 24, 3988-3992.	11.1	118
87	Engineering metallic nanostructures for plasmonics and nanophotonics. Reports on Progress in Physics, 2012, 75, 036501.	8.1	427
88	Template-Stripped Plasmonic Films For Photovoltaics. , 2012, , .		0
89	Fabrication of carbon/refractory metal nanocomposites as thermally stable metallic photonic crystals. Journal of Materials Chemistry, 2011, 21, 10836.	6.7	49
90	Monolithic Integration of Continuously Tunable Plasmonic Nanostructures. Nano Letters, 2011, 11, 3526-3530.	4.5	59

#	Article	IF	CITATIONS
91	Impact Dynamics of Colloidal Quantum Dot Solids. Langmuir, 2011, 27, 12677-12683.	1.6	8
92	Facile Synthesis of Silver Chalcogenide (Ag $<$ sub $>$ 2 $<$ /sub $>$ E; E = Se, S, Te) Semiconductor Nanocrystals. Journal of the American Chemical Society, 2011, 133, 6509-6512.	6.6	189
93	Template-Stripped Smooth Ag Nanohole Arrays with Silica Shells for Surface Plasmon Resonance Biosensing. ACS Nano, 2011, 5, 6244-6253.	7.3	203
94	Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chemical Communications, 2011, 47, 11721.	2.2	219
95	Size- and Temperature-Dependent Charge Transport in PbSe Nanocrystal Thin Films. Nano Letters, 2011, 11, 3887-3892.	4.5	114
96	Imaging "Invisible―Dopant Atoms in Semiconductor Nanocrystals. Nano Letters, 2011, 11, 5553-5557.	4.5	33
97	Hot-Electron Transfer from Semiconductor Nanocrystals. Science, 2010, 328, 1543-1547.	6.0	775
98	Control of Thermal Emission by Selective Heating of Periodic Structures. Physical Review Letters, 2010, 104, 043901.	2.9	15
99	Micropattern Deposition of Colloidal Semiconductor Nanocrystals by Aerodynamic Focusing. Aerosol Science and Technology, 2010, 44, 55-60.	1.5	10
100	Influence of Atmospheric Gases on the Electrical Properties of PbSe Quantum-Dot Films. Journal of Physical Chemistry C, 2010, 114, 9988-9996.	1.5	72
101	Size-Dependent Electrical Transport in CdSe Nanocrystal Thin Films. Nano Letters, 2010, 10, 3727-3732.	4.5	134
102	Thermally Degradable Ligands for Nanocrystals. ACS Nano, 2010, 4, 4523-4530.	7.3	53
103	Effect of Different Manganese Precursors on the Doping Efficiency in ZnSe Nanocrystals. Journal of Physical Chemistry C, 2010, 114, 21969-21975.	1.5	27
104	Beaming thermal emission from hot metallic bull's eyes. Optics Express, 2010, 18, 4829.	1.7	67
105	Three-Dimensional Plasmonic Nanofocusing. Nano Letters, 2010, 10, 1369-1373.	4.5	167
106	In situ high temperature TEM analysis of sintering in nanostructured tungsten and tungsten–molybdenum alloy photonic crystals. Journal of Materials Chemistry, 2010, 20, 1538-1545.	6.7	25
107	The role of stress in the time-dependent optical response of silicon photonic band gap crystals. Applied Physics Letters, 2009, 95, 051910.	1.5	1
108	Solar Cells Based on Junctions between Colloidal PbSe Nanocrystals and Thin ZnO Films. ACS Nano, 2009, 3, 3638-3648.	7. 3	250

#	Article	lF	CITATIONS
109	Ultrasmooth Patterned Metals for Plasmonics and Metamaterials. Science, 2009, 325, 594-597.	6.0	770
110	High Carrier Densities Achieved at Low Voltages in Ambipolar PbSe Nanocrystal Thin-Film Transistors. Nano Letters, 2009, 9, 3848-3852.	4.5	111
111	Nanowire-quantum-dot solar cells and the influence of nanowire length on the charge collection efficiency. Applied Physics Letters, 2009, 95, .	1.5	92
112	Strong Electronic Coupling in Two-Dimensional Assemblies of Colloidal PbSe Quantum Dots. ACS Nano, 2009, 3, 1532-1538.	7.3	109
113	Thermally Stable Organic–Inorganic Hybrid Photoresists for Fabrication of Photonic Band Gap Structures with Direct Laser Writing. Advanced Materials, 2008, 20, 606-610.	11.1	46
114	The role of fluid flow and convective steering during the assembly of colloidal crystals. Journal of Crystal Growth, 2008, 310, 131-139.	0.7	33
115	Doped Nanocrystals. Science, 2008, 319, 1776-1779.	6.0	1,324
116	Electron Dynamics at the ZnO (101ì0) Surface. Journal of Physical Chemistry C, 2008, 112, 14682-14692.	1.5	38
117	Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals. Nano Letters, 2008, 8, 3238-3243.	4.5	126
118	Mechanistic Principles of Colloidal Crystal Growth by Evaporation-Induced Convective Steering. Langmuir, 2008, 24, 13683-13693.	1.6	52
119	Comment on "Self-Purification in Semiconductor Nanocrystals― Physical Review Letters, 2008, 100, 179702; author reply 179703.	2.9	25
120	Ultrafast switching of Si inverse opal photonic band gap crystals. , 2007, , .		0
121	Effects of Thermal Processes on the Structure of Monolithic Tungsten and Tungsten Alloy Photonic Crystals. Chemistry of Materials, 2007, 19, 4563-4569.	3.2	28
122	Tailoring Self-Assembled Metallic Photonic Crystals for Modified Thermal Emission. Physical Review Letters, 2007, 99, 053906.	2.9	52
123	Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals. Journal of Applied Physics, 2007, 102, 053111.	1.1	18
124	Silicon life forms. Nature, 2007, 446, 146-147.	13.7	7
125	A view of the future. Nature Materials, 2007, 6, 177-178.	13.3	53
126	Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices. Nano Letters, 2007, 7, 1793-1798.	4.5	935

#	Article	IF	CITATIONS
127	Colloidal Crystal Layers of Hexagonal Nanoplates by Convective Assembly. Langmuir, 2006, 22, 5217-5219.	1.6	60
128	Quantifying stacking faults and vacancies in thin convectively assembled colloidal crystals. Applied Physics Letters, 2006, 89, 241913.	1.5	19
129	The Role of Thickness Transitions in Convective Assembly. Nano Letters, 2006, 6, 2249-2253.	4.5	84
130	Impact of Ripening on Manganese-Doped ZnSe Nanocrystals. Nano Letters, 2006, 6, 334-340.	4.5	110
131	Doping semiconductor nanocrystals. Nature, 2005, 436, 91-94.	13.7	1,491
132	Tailoring Air Defects in Self-Assembled Photonic Bandgap Crystals. Advanced Materials, 2005, 17, 1908-1911.	11.1	65
133	Synthetic approaches toward tungsten photonic crystals for thermal emission., 2005, 6005, 9.		7
134	Avoiding cracks in self-assembled photonic band-gap crystals. Applied Physics Letters, 2004, 84, 3573-3575.	1.5	122
135	Opaline Photonic Crystals: How Does Self-Assembly Work?. Advanced Materials, 2004, 16, 1393-1399.	11.1	406
136	Selective excitation of erbium in silicon-infiltrated silica colloidal photonic crystals. Journal of Applied Physics, 2004, 95, 2297-2302.	1.1	24
137	Quantum Dot Photonic Crystals. Nanostructure Science and Technology, 2003, , 239-260.	0.1	0
138	Future directions in solid state chemistry: report of the NSF-sponsored workshop. Progress in Solid State Chemistry, 2002, 30, 1-101.	3.9	24
139	In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles. Science, 2002, 298, 1759-1762.	6.0	2,961
140	Defective promise in photonics. Nature, 2002, 416, 685-686.	13.7	57
141	High-Quality Manganese-Doped ZnSe Nanocrystals. Nano Letters, 2001, 1, 3-7.	4.5	782
142	Chemical Approaches to Three-Dimensional Semiconductor Photonic Crystals. Advanced Materials, 2001, 13, 371-376.	11.1	336
143	On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414, 289-293.	13.7	1,575
144	Doping and Charging in Colloidal Semiconductor Nanocrystals. MRS Bulletin, 2001, 26, 1005-1008.	1.7	73

#	Article	IF	Citations
145	New Aspects of Nanocrystal Research. MRS Bulletin, 2001, 26, 981-984.	1.7	31
146	Conjugated-Polymer Photonic Crystals. Advanced Materials, 2000, 12, 1176-1180.	11.1	120
147	Single-domain spectroscopy of self-assembled photonic crystals. Applied Physics Letters, 2000, 76, 1627-1629.	1.5	124
148	Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots. Advanced Materials, 1999, 11, 165-169.	11.1	355
149	Single-Molecule Spectroscopy and Quantum Optics in Solids. Advances in Atomic, Molecular and Optical Physics, 1998, 38, 193-236.	2.3	20
150	Simultaneous Imaging of Individual Molecules Aligned Both Parallel and Perpendicular to the Optic Axis. Physical Review Letters, 1998, 81, 5322-5325.	2.9	180
151	Excitation of a single molecule on the surface of a spherical microcavity. Applied Physics Letters, 1997, 71, 297-299.	1.5	47
152	Single-molecule nanophotonics in solids. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 48, 169-174.	1.7	6
153	Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states. Physical Review B, 1996, 54, 4843-4856.	1.1	1,197
154	Three-Dimensional Imaging of Single Molecules Solvated in Pores of Poly(acrylamide) Gels. Science, 1996, 274, 966-968.	6.0	364
155	Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. Physical Review Letters, 1996, 77, 3873-3876.	2.9	690
156	Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Physical Review B, 1996, 53, 16338-16346.	1.1	980
157	Size dependence of exciton fine structure in CdSe quantum dots. Physical Review B, 1996, 53, 16347-16354.	1.1	467
158	Stark spectroscopy of CdSe nanocrystallites: The significance of transition linewidths. Journal of Chemical Physics, 1995, 103, 5236-5245.	1.2	68
159	Observation of the "Dark Exciton" in CdSe Quantum Dots. Physical Review Letters, 1995, 75, 3728-3731.	2.9	7 59
160	Structure in the lowest absorption feature of CdSe quantum dots. Journal of Chemical Physics, 1995, 103, 5260-5268.	1.2	119
161	Measurement of the size dependent hole spectrum in CdSe quantum dots. Physical Review Letters, 1994, 72, 2612-2615.	2.9	463
162	Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115, 8706-8715.	6.6	8,492

#	Article	IF	CITATIONS
163	<title>Size-dependent spectroscopy and photodynamics of some II-VI semiconductor nanocrystallites (quantum dots)</title> ., 1993, 1861, 280.		O
164	Bright Triplet Emission from Lead Halide Perovskite Nanocrystals. , 0, , .		0
165	Synthesis and Isolation of Discrete-Growing CdSe Nanocrystals. , 0, , .		0
166	Photoluminescence Excitation Spectroscopy on Individual Quantum Emitters. , 0, , .		0
167	Bright Triplet Emission from Lead Halide Perovskite Nanocrystals. , 0, , .		0
168	Synthesis and Isolation of Discrete-Growing CdSe Nanocrystals. , 0, , .		0
169	Role of Gain in Fabry–Pérot Surface Plasmon Polariton Lasers. ACS Photonics, 0, , .	3.2	7