Yuanjing Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4195552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Nondoped OLEDs with Negligible Efficiency Rollâ€Off Fabricated from Aggregationâ€Induced Delayed Fluorescence Luminogens. Angewandte Chemie - International Edition, 2017, 56, 12971-12976.	13.8	320
2	Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nature Communications, 2019, 10, 768.	12.8	296
3	Tetraphenylfuran: aggregation-induced emission or aggregation-caused quenching?. Materials Chemistry Frontiers, 2017, 1, 1125-1129.	5.9	150
4	Deciphering the working mechanism of aggregation-induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chemical Science, 2018, 9, 4662-4670.	7.4	150
5	Biradicalâ€Featured Stable Organicâ€Smallâ€Molecule Photothermal Materials for Highly Efficient Solarâ€Driven Water Evaporation. Advanced Materials, 2020, 32, e1908537.	21.0	149
6	Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process. Nature Communications, 2019, 10, 2952.	12.8	125
7	An acidic pH independent piperazine–TPE AlEgen as a unique bioprobe for lysosome tracing. Chemical Science, 2017, 8, 7593-7603.	7.4	112
8	Facile access to deep red/near-infrared emissive AlEgens for efficient non-doped OLEDs. Chemical Science, 2018, 9, 6118-6125.	7.4	101
9	Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration. Chemical Science, 2018, 9, 2705-2710.	7.4	98
10	Furan Is Superior to Thiophene: A Furan ored AlEgen with Remarkable Chromism and OLED Performance. Advanced Science, 2017, 4, 1700005.	11.2	94
11	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€6witchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie - International Edition, 2018, 57, 5011-5015.	13.8	73
12	Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials, 2020, 248, 120036.	11.4	71
13	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€6witchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie, 2018, 130, 5105-5109.	2.0	63
14	Siloles in optoelectronic devices. Journal of Materials Chemistry C, 2017, 5, 7375-7389.	5.5	62
15	Fluorescence Turn-On Visualization of Microscopic Processes for Self-Healing Gels by AlEgens and Anticounterfeiting Application. Chemistry of Materials, 2019, 31, 5683-5690.	6.7	52
16	Polyyne bridged AIE luminogens with red emission: design, synthesis, properties and applications. Journal of Materials Chemistry B, 2017, 5, 1650-1657.	5.8	50
17	Tetraphenylpyrazine-based luminogens with full-colour emission. Materials Chemistry Frontiers, 2018, 2, 1310-1316.	5.9	44
18	Introductory lecture: recent research progress on aggregation-induced emission. Faraday Discussions, 2017, 196, 9-30.	3.2	36

YUANJING CAI

#	Article	IF	CITATIONS
19	Synthesis of an efficient far-red/near-infrared luminogen with AIE characteristics for <i>in vivo</i> bioimaging applications. Chemical Communications, 2019, 55, 5615-5618.	4.1	32
20	Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AIEgens. Chemical Science, 2020, 11, 8438-8447.	7.4	32
21	Sulfur-bridged tetraphenylethylene AlEgens for deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 6534-6542.	5.5	30
22	Synthesis and High Solid-State Fluorescence of Cyclic Silole Derivatives. Organometallics, 2015, 34, 78-85.	2.3	20
23	A Luminescent Nitrogenâ€Containing Polycyclic Aromatic Hydrocarbon Synthesized by Photocyclodehydrogenation with Unprecedented Regioselectivity. Chemistry - A European Journal, 2015, 21, 17973-17980.	3.3	17
24	AEE-active cyclic tetraphenylsilole derivatives with â^¼100% solid-state fluorescence quantum efficiency. Dalton Transactions, 2015, 44, 12970-12975.	3.3	16
25	High solid-state fluorescence in ring-shaped AEE-active tetraphenylsilole derivatives. Chemical Communications, 2014, 50, 12714-12717.	4.1	12
26	Free Radical Chemistry of Phosphasilenes. Angewandte Chemie - International Edition, 2020, 59, 16007-16012.	13.8	12
27	Synthesis and Photophysical Properties of Two Strongly Fluorescent Bis(diquinaldinatoalumino)-9-silafluorenes. Organometallics, 2013, 32, 6871-6874.	2.3	10
28	Ringâ€5haped Silafluorene Derivatives as Efficient Solidâ€5tate UVâ€Fluorophores: Synthesis, Characterization, and Photoluminescent Properties. Chemistry - A European Journal, 2014, 20, 14040-14050.	3.3	10
29	Chemie freier Radikale von Phosphasilenen. Angewandte Chemie, 2020, 132, 16141-16146.	2.0	3
30	Recent developments in the field of photoluminescent organically modified cyclosiloxanes. Dalton Transactions, 2017, 46, 3086-3094.	3.3	2
31	Silole-Based Cyclosiloxanes with High Solid-State Fluorescence Quantum Yields and Their AIE Properties. ACS Symposium Series, 2016, , 137-155.	0.5	1