## Peigang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419540/publications.pdf Version: 2024-02-01



PEICANCL

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the<br>GaN/Sn:Ga <sub>2</sub> O <sub>3</sub> pn Junction. ACS Nano, 2018, 12, 12827-12835.                                                                            | 14.6 | 405       |
| 2  | Zero-Power-Consumption Solar-Blind Photodetector Based on β-Ga <sub>2</sub> O <sub>3</sub> /NSTO<br>Heterojunction. ACS Applied Materials & Interfaces, 2017, 9, 1619-1628.                                                                                       | 8.0  | 308       |
| 3  | Construction of GaN/Ga <sub>2</sub> O <sub>3</sub> p–n junction for an extremely high responsivity self-powered UV photodetector. Journal of Materials Chemistry C, 2017, 5, 10562-10570.                                                                         | 5.5  | 234       |
| 4  | Ultrasensitive, Superhigh Signal-to-Noise Ratio, Self-Powered Solar-Blind Photodetector Based on<br><i>n</i> -Ga <sub>2</sub> O <sub>3</sub> / <i>p</i> -CuSCN Core–Shell Microwire Heterojunction. ACS<br>Applied Materials & Interfaces, 2019, 11, 35105-35114. | 8.0  | 161       |
| 5  | Superb Electrically Conductive Graphene Fibers via Doping Strategy. Advanced Materials, 2016, 28, 7941-7947.                                                                                                                                                      | 21.0 | 140       |
| 6  | All-Oxide NiO/Ga <sub>2</sub> O <sub>3</sub> p–n Junction for Self-Powered UV Photodetector. ACS<br>Applied Electronic Materials, 2020, 2, 2032-2038.                                                                                                             | 4.3  | 135       |
| 7  | A self-powered solar-blind photodetector with large <i>V</i> <sub>oc</sub> enhancing performance<br>based on the PEDOT:PSS/Ga <sub>2</sub> O <sub>3</sub> organic–inorganic hybrid heterojunction.<br>Journal of Materials Chemistry C, 2020, 8, 1292-1300.       | 5.5  | 94        |
| 8  | Broadband Ultraviolet Self-Powered Photodetector Constructed on Exfoliated<br><i>β-</i> Ga <sub>2</sub> O <sub>3</sub> /Cul Core–Shell Microwire Heterojunction with Superior<br>Reliability. Journal of Physical Chemistry Letters, 2021, 12, 447-453.           | 4.6  | 90        |
| 9  | A high-performance ultraviolet solar-blind photodetector based on a β-Ga <sub>2</sub> O <sub>3</sub><br>Schottky photodiode. Journal of Materials Chemistry C, 2019, 7, 13920-13929.                                                                              | 5.5  | 88        |
| 10 | Fast-response solar-blind ultraviolet photodetector with a graphene/β-Ga2O3/graphene hybrid structure. Journal of Alloys and Compounds, 2017, 692, 634-638.                                                                                                       | 5.5  | 84        |
| 11 | High sensitivity and fast response self-powered solar-blind ultraviolet photodetector with a<br>β-Ga <sub>2</sub> O <sub>3</sub> /spiro-MeOTAD p–n heterojunction. Journal of Materials Chemistry C,<br>2020, 8, 4502-4509.                                       | 5.5  | 69        |
| 12 | High sensitive and stable self-powered solar-blind photodetector based on solution-processed all inorganic CuMO2/Ga2O3 pn heterojunction. Materials Today Physics, 2021, 17, 100335.                                                                              | 6.0  | 67        |
| 13 | Oxygen vacancies modulating the photodetector performances in ε-Ga <sub>2</sub> O <sub>3</sub> thin<br>films. Journal of Materials Chemistry C, 2021, 9, 5437-5444.                                                                                               | 5.5  | 66        |
| 14 | Construction of a β-Ga <sub>2</sub> O <sub>3</sub> -based metal–oxide–semiconductor-structured photodiode for high-performance dual-mode solar-blind detector applications. Journal of Materials Chemistry C, 2020, 8, 5071-5081.                                 | 5.5  | 58        |
| 15 | Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga2O3 thin films. Electronic Materials Letters, 2017, 13, 483-488.                                                                                                | 2.2  | 53        |
| 16 | Optimizing the performance of a β-Ga <sub>2</sub> O <sub>3</sub> solar-blind UV photodetector by compromising between photoabsorption and electric field distribution. Optical Materials Express, 2018, 8, 2918.                                                  | 3.0  | 47        |
| 17 | Fabrication of ϵ-Ga <sub>2</sub> O <sub>3</sub> solar-blind photodetector with symmetric interdigital<br>Schottky contacts responding to low intensity light signal. Journal Physics D: Applied Physics, 2020,<br>53, 295109.                                     | 2.8  | 43        |
| 18 | Comparison of optoelectrical characteristics between Schottky and Ohmic contacts to<br><i>β</i> -Ga <sub>2</sub> O <sub>3</sub> thin film. Journal Physics D: Applied Physics, 2020, 53, 085105.                                                                  | 2.8  | 40        |

Peigang Li

| #  | Article                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Energy-band alignments at ZnO/Ga2O3 and Ta2O5/Ga2O3 heterointerfaces by X-ray photoelectron spectroscopy and electron affinity rule. Journal of Applied Physics, 2019, 126, .                                                                                        | 2.5 | 38        |
| 20 | Fabrication and characterization of Mg-doped Îμ-Ga2O3 solar-blind photodetector. Vacuum, 2020, 177,<br>109425.                                                                                                                                                       | 3.5 | 33        |
| 21 | Ultrahigh-performance planar β-Ga2O3 solar-blind Schottky photodiode detectors. Science China<br>Technological Sciences, 2021, 64, 59-64.                                                                                                                            | 4.0 | 32        |
| 22 | Band alignments of <i>β</i> -Ga <sub>2</sub> O <sub>3</sub> with MgO, Al <sub>2</sub> O <sub>3</sub><br>and MgAl <sub>2</sub> O <sub>4</sub> measured by x-ray photoelectron spectroscopy. Journal Physics<br>D: Applied Physics, 2019, 52, 295104.                  | 2.8 | 28        |
| 23 | Fe doping-stabilized γ-Ga <sub>2</sub> O <sub>3</sub> thin films with a high room temperature saturation magnetic moment. Journal of Materials Chemistry C, 2020, 8, 536-542.                                                                                        | 5.5 | 28        |
| 24 | Self-Powered <i>β</i> -Ga <sub>2</sub> O <sub>3</sub> Solar-Blind Photodetector Based on the Planar<br>Au/Ga <sub>2</sub> O <sub>3</sub> Schottky Junction. ECS Journal of Solid State Science and<br>Technology, 2020, 9, 065011.                                   | 1.8 | 28        |
| 25 | Characterization of hexagonal É›-Ga1.8Sn0.2O3 thin films for solar-blind ultraviolet applications.<br>Optical Materials, 2016, 62, 651-654.                                                                                                                          | 3.6 | 25        |
| 26 | Preliminary study for the effects of temperatures on optoelectrical properties of β-Ga2O3 thin films.<br>Vacuum, 2019, 166, 79-83.                                                                                                                                   | 3.5 | 25        |
| 27 | β-Ga <sub>2</sub> O <sub>3</sub> nanorod arrays with high light-to-electron conversion for solar-blind deep ultraviolet photodetection. RSC Advances, 2019, 9, 6064-6069.                                                                                            | 3.6 | 23        |
| 28 | A broadband UV-visible photodetector based on a Ga <sub>2</sub> O <sub>3</sub> /BFO heterojunction.<br>Physica Scripta, 2021, 96, 125823.                                                                                                                            | 2.5 | 22        |
| 29 | High-sensitive, self-powered deep UV photodetector based on p-CuSCN/n-Ga2O3 thin film heterojunction. Optics Communications, 2022, 504, 127483.                                                                                                                      | 2.1 | 22        |
| 30 | Reinforcement of double built-in electric fields in spiro-MeOTAD/Ga <sub>2</sub> O <sub>3</sub> /Si<br>p–i–n structure for a high-sensitivity solar-blind UV photovoltaic detector. Journal of Materials<br>Chemistry C, 2021, 9, 14788-14798.                       | 5.5 | 21        |
| 31 | Oxygen vacancies modulating self-powered photoresponse in PEDOT:PSS/Îμ-Ga2O3 heterojunction by<br>trapping effect. Science China Technological Sciences, 2022, 65, 704-712.                                                                                          | 4.0 | 20        |
| 32 | A study on the effects of mixed organic cations on the structure and properties in lead halide perovskites. Physical Chemistry Chemical Physics, 2020, 22, 3105-3111.                                                                                                | 2.8 | 19        |
| 33 | A Spiro-MeOTAD/Ga <sub>2</sub> O <sub>3</sub> /Si p-i-n Junction Featuring Enhanced Self-Powered<br>Solar-Blind Sensing via Balancing Absorption of Photons and Separation of Photogenerated Carriers.<br>ACS Applied Materials & Interfaces, 2021, 13, 57619-57628. | 8.0 | 19        |
| 34 | Enhancing the self-powered performance in VOx/Ga2O3 heterojunction ultraviolet photodetector by hole-transport engineering. Journal of Alloys and Compounds, 2022, 902, 163801.                                                                                      | 5.5 | 17        |
| 35 | Ti <sub>3</sub> C <sub>2</sub> /ĺµ-Ga <sub>2</sub> O <sub>3</sub> Schottky Self-Powered Solar-Blind<br>Photodetector With Robust Responsivity. IEEE Journal of Selected Topics in Quantum Electronics,<br>2022, 28, 1-8.                                             | 2.9 | 15        |
| 36 | Enhancement-mode normally-off β-Ga <sub>2</sub> O <sub>3</sub> :Si metal-semiconductor field-effect deep-ultraviolet phototransistor. Semiconductor Science and Technology, 2022, 37, 015001.                                                                        | 2.0 | 13        |

Peigang Li

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Low MOCVD growth temperature controlled phase transition of Ga2O3 films for ultraviolet sensing.<br>Vacuum, 2022, 203, 111270.                                                                                                                                 | 3.5 | 13        |
| 38 | Preparation and electromagnetic characteristics of silica coated Fe–Ni–Mo alloy flakes. Journal of<br>Materials Science: Materials in Electronics, 2007, 18, 481-486.                                                                                          | 2.2 | 12        |
| 39 | Electrical Characterizations of Planar Ga2O3 Schottky Barrier Diodes. Micromachines, 2021, 12, 259.                                                                                                                                                            | 2.9 | 12        |
| 40 | A study for the influences of temperatures on ZnGa <sub>2</sub> O <sub>4</sub> films and solar-blind sensing performances. Journal Physics D: Applied Physics, 2021, 54, 405107.                                                                               | 2.8 | 12        |
| 41 | Enhanced deep-ultraviolet sensing by an all-inorganic p-PZT/n-Ga <sub>2</sub> O <sub>3</sub> thin-film<br>heterojunction. Journal Physics D: Applied Physics, 2021, 54, 195104.                                                                                | 2.8 | 11        |
| 42 | Phase junction enhanced photocatalytic activity of Ga <sub>2</sub> O <sub>3</sub> nanorod arrays on flexible glass fiber fabric. RSC Advances, 2020, 10, 11499-11506.                                                                                          | 3.6 | 10        |
| 43 | Fabrication of a poly(N-vinyl carbazole)/ľµ-Ga <sub>2</sub> O <sub>3</sub> organic–inorganic<br>heterojunction diode for solar-blind sensing applications. Journal Physics D: Applied Physics, 2021, 54,<br>215104.                                            | 2.8 | 10        |
| 44 | Simply equipped ε-Ga <sub>2</sub> O <sub>3</sub> film/ZnO nanoparticle heterojunction for self-powered deep UV sensor. Physica Scripta, 2022, 97, 015808.                                                                                                      | 2.5 | 9         |
| 45 | Rectifying Effect of the Sr <sub>3</sub> Al <sub>2</sub> O <sub>6</sub> /Ga <sub>2</sub> O <sub>3</sub><br>Heterojunction. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900570.                                                   | 1.8 | 8         |
| 46 | Photoresponsive characteristics of EFG-grown iron-doped (100) Ga <sub>2</sub> O <sub>3</sub><br>substrate with low dark current. Physica Scripta, 2021, 96, 065801.                                                                                            | 2.5 | 8         |
| 47 | X-ray photoelectron spectroscopy study for band alignments of BaTiO3/Ga2O3 and In2O3/Ga2O3 heterostructures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .                                                               | 2.1 | 8         |
| 48 | Superconductivity in Ca0.5La0.5FBiSe2. Journal of Superconductivity and Novel Magnetism, 2017, 30, 305-309.                                                                                                                                                    | 1.8 | 7         |
| 49 | Determination of type-ΙΙ band alignment <i>β</i> -Ga2O3/GaAs heterojunction interface by x-ray<br>photoelectron spectroscopy. Journal of Applied Physics, 2021, 130, .                                                                                         | 2.5 | 7         |
| 50 | Epitaxial Growth and Solarâ€Blind Photoelectric Characteristic of Ga 2 O 3 Film on Various Oriented<br>Sapphire Substrates by Plasmaâ€Enhanced Chemical Vapor Deposition. Physica Status Solidi (A)<br>Applications and Materials Science, 2021, 218, 2100076. | 1.8 | 6         |
| 51 | Large and anisotropic linear magnetoresistance in bulk stoichiometric Cd3As2 crystals. Science China:<br>Physics, Mechanics and Astronomy, 2015, 58, 1-6.                                                                                                      | 5.1 | 4         |
| 52 | The size effect on transport properties of colossal magnetoresistance materials La0.67Ca0.33MnO3.<br>Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 251-257.                                                                           | 0.2 | 2         |
| 53 | A self-powered deep-ultraviolet photodetector based on a hybrid organic-inorganic<br>p-P3HT/n-Ga <sub>2</sub> O <sub>3</sub> heterostructure. Physica Scripta, 2022, 97, 075804.                                                                               | 2.5 | 2         |
| 54 | Composition tuning of rectifying polarity of colloidal CdS1â^'x Se x nanocrystal-based devices. Journal of Nanoparticle Research, 2015, 17, 1.                                                                                                                 | 1.9 | 1         |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Factors affecting the superconductivity in the process of depositing Nd1.85Ce0.15CuO4â^î^î⁄ by the pulsed electron deposition technique. Science in China Series G: Physics, Mechanics and Astronomy, 2007, 50, 747-752. | 0.2 | 0         |