
Humberto Mestre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/419533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The glymphatic pathway in neurological disorders. Lancet Neurology, The, 2018, 17, 1016-1024.	10.2	831
2	Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature Communications, 2018, 9, 4878.	12.8	550
3	Perivascular spaces in the brain: anatomy, physiology and pathology. Nature Reviews Neurology, 2020, 16, 137-153.	10.1	405
4	Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiology of Disease, 2016, 93, 215-225.	4.4	377
5	Aquaporin-4-dependent glymphatic solute transport in the rodent brain. ELife, 2018, 7, .	6.0	365
6	The Brain's Glymphatic System: Current Controversies. Trends in Neurosciences, 2020, 43, 458-466.	8.6	319
7	Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science, 2020, 367, .	12.6	300
8	Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clinical Science, 2017, 131, 2257-2274.	4.3	226
9	Glymphatic clearance controls state-dependent changes in brain lactate concentration. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2112-2124.	4.3	208
10	Glymphatic System Impairment in Alzheimer's Disease and Idiopathic Normal Pressure Hydrocephalus. Trends in Molecular Medicine, 2020, 26, 285-295.	6.7	206
11	Fluid transport in the brain. Physiological Reviews, 2022, 102, 1025-1151.	28.8	192
12	Impaired Glymphatic Transport in Spontaneously Hypertensive Rats. Journal of Neuroscience, 2019, 39, 6365-6377.	3.6	131
13	Hydraulic resistance of periarterial spaces in the brain. Fluids and Barriers of the CNS, 2019, 16, 19.	5.0	68
14	Direct Measurement of Cerebrospinal Fluid Production in Mice. Cell Reports, 2020, 33, 108524.	6.4	66
15	Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI Insight, 2018, 3, .	5.0	64
16	Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection. ELife, 2021, 10, .	6.0	46
17	Immunization with neural-derived antigens inhibits lipid peroxidation after spinal cord injury. Neuroscience Letters, 2010, 476, 62-65.	2.1	37
18	Autoreactivity against myelin basic protein in patients with chronic paraplegia. European Spine Journal, 2012, 21, 964-970.	2.2	37

HUMBERTO MESTRE

#	Article	IF	CITATIONS
19	Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11010-11019.	7.1	35
20	Immunization with A91 peptide or copolymerâ€₁ reduces the production of nitric oxide and inducible nitric oxide synthase gene expression after spinal cord injury. Journal of Neuroscience Research, 2012, 90, 656-663.	2.9	33
21	Surface periarterial spaces of the mouse brain are open, not porous. Journal of the Royal Society Interface, 2020, 17, 20200593.	3.4	30
22	Spinal cord injury sequelae alter drug pharmacokinetics: an overview. Spinal Cord, 2011, 49, 955-960.	1.9	28
23	Longitudinal shear waves for elastic characterization of tissues in optical coherence elastography. Biomedical Optics Express, 2019, 10, 3699.	2.9	28
24	Development of Protective Autoimmunity by Immunization with a Neural-Derived Peptide Is Ineffective in Severe Spinal Cord Injury. PLoS ONE, 2012, 7, e32027.	2.5	25
25	Copolymer-1 Promotes Neurogenesis and Improves Functional Recovery after Acute Ischemic Stroke in Rats. PLoS ONE, 2015, 10, e0121854.	2.5	25
26	Cerebrospinal fluid is a significant fluid source for anoxic cerebral oedema. Brain, 2022, 145, 787-797.	7.6	23
27	Nestin Overexpression Precedes Caspase-3 Upregulation in Rats Exposed to Controlled Cortical Impact Traumatic Brain Injury. Cell Medicine, 2012, 4, 55-63.	5.0	22
28	Immunization with a Neural-Derived Peptide Protects the Spinal Cord from Apoptosis after Traumatic Injury. BioMed Research International, 2013, 2013, 1-8.	1.9	18
29	Therapeutic Window for Combination Therapy of A91 Peptide and Glutathione Allows Delayed Treatment After Spinal Cord Injury. Basic and Clinical Pharmacology and Toxicology, 2013, 112, 314-318.	2.5	16
30	Prophylactic neuroprotection with A91 improves the outcome of spinal cord injured rats. Neuroscience Letters, 2013, 554, 59-63.	2.1	14
31	In Vivo Imaging of Cerebrospinal Fluid Transport through the Intact Mouse Skull using Fluorescence Macroscopy. Journal of Visualized Experiments, 2019, , .	0.3	14
32	Lewis, Fischer 344, and Sprague-Dawley Rats Display Differences in Lipid Peroxidation, Motor Recovery, and Rubrospinal Tract Preservation after Spinal Cord Injury. Frontiers in Neurology, 2015, 6, 108.	2.4	10
33	Monocyte Locomotion Inhibitory Factor Produced by <i>E. histolytica</i> Improves Motor Recovery and Develops Neuroprotection after Traumatic Injury to the Spinal Cord. BioMed Research International, 2013, 2013, 1-10.	1.9	8
34	Cabor domain optical coherence microscopy combined with laser scanning confocal fluorescence microscopy. Biomedical Optics Express, 2019, 10, 6242.	2.9	5
35	A preliminary study on using reverberant shear wave fields in optical coherence elastography to examine mice brain ex vivo. , 2019, , .		3

#	Article	IF	CITATIONS
37	Immunization with Neural-Derived Peptides as a Potential Therapy in Neurodegenerative Diseases. , 0, , .		1