Ralph Panstruga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4194650/publications.pdf Version: 2024-02-01

PAIDH PANSTRUCA

#	Article	IF	CITATIONS
1	The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance. Cell, 1997, 88, 695-705.	28.9	1,066
2	A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense. Science, 2009, 323, 101-106.	12.6	927
3	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	21.4	840
4	Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 2010, 330, 1543-1546.	12.6	725
5	Autophagy Negatively Regulates Cell Death by Controlling NPR1-Dependent Salicylic Acid Signaling during Senescence and the Innate Immune Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2009, 21, 2914-2927.	6.6	531
6	An Arabidopsis Callose Synthase, GSL5, Is Required for Wound and Papillary Callose Formation. Plant Cell, 2003, 15, 2503-2513.	6.6	443
7	Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 2006, 38, 716-720.	21.4	430
8	Co-option of a default secretory pathway for plant immune responses. Nature, 2008, 451, 835-840.	27.8	414
9	The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 2014, 46, 1034-1038.	21.4	391
10	A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends in Plant Science, 2011, 16, 117-125.	8.8	374
11	Conserved Molecular Components for Pollen Tube Reception and Fungal Invasion. Science, 2010, 330, 968-971.	12.6	372
12	Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life. Cell Host and Microbe, 2014, 16, 364-375.	11.0	367
13	Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 2002, 416, 447-451.	27.8	363
14	Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3135-3140.	7.1	327
15	The Barley MLO Modulator of Defense and Cell Death Is Responsive to Biotic and Abiotic Stress Stimuli. Plant Physiology, 2002, 129, 1076-1085.	4.8	294
16	Naturally Occurring Broad-Spectrum Powdery Mildew Resistance in a Central American Tomato Accession Is Caused by Loss of <i>Mlo</i> Function. Molecular Plant-Microbe Interactions, 2008, 21, 30-39.	2.6	269
17	PAMP (Pathogen-associated Molecular Pattern)-induced Changes in Plasma Membrane Compartmentalization Reveal Novel Components of Plant Immunity. Journal of Biological Chemistry, 2010, 285, 39140-39149.	3.4	268
18	Tête à tête inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytologist, 2006, 171, 699-718.	7.3	265

#	Article	IF	CITATIONS
19	Topology, Subcellular Localization, and Sequence Diversity of the Mlo Family in Plants. Journal of Biological Chemistry, 1999, 274, 34993-35004.	3.4	261
20	SNARE-Ware: The Role of SNARE-Domain Proteins in Plant Biology. Annual Review of Cell and Developmental Biology, 2007, 23, 147-174.	9.4	255
21	Structure and evolution of barley powdery mildew effector candidates. BMC Genomics, 2012, 13, 694.	2.8	238
22	<i>mlo</i> -Based Resistance: An Apparently Universal "Weapon―to Defeat Powdery Mildew Disease. Molecular Plant-Microbe Interactions, 2017, 30, 179-189.	2.6	229
23	Molecular Phylogeny and Evolution of the Plant-Specific Seven-Transmembrane MLO Family. Journal of Molecular Evolution, 2003, 56, 77-88.	1.8	220
24	Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cellular Microbiology, 2011, 13, 210-226.	2.1	216
25	A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature, 2004, 430, 887-891.	27.8	202
26	Establishing compatibility between plants and obligate biotrophic pathogens. Current Opinion in Plant Biology, 2003, 6, 320-326.	7.1	191
27	Arabidopsis Gâ€protein interactome reveals connections to cell wall carbohydrates and morphogenesis. Molecular Systems Biology, 2011, 7, 532.	7.2	191
28	<i>Magical mystery tour</i> : <scp> MLO</scp> proteins in plant immunity and beyond. New Phytologist, 2014, 204, 273-281.	7.3	188
29	Barley MLO Modulates Actin-Dependent and Actin-Independent Antifungal Defense Pathways at the Cell Periphery. Plant Physiology, 2007, 144, 1132-1143.	4.8	174
30	Durable broadâ€spectrum powdery mildew resistance in pea <i>er1</i> plants is conferred by natural lossâ€ofâ€function mutations in <i>PsMLO1</i> . Molecular Plant Pathology, 2011, 12, 866-878.	4.2	165
31	<i>mlo</i> â€based powdery mildew resistance in hexaploid bread wheat generated by a nonâ€transgenic <scp>TILLING</scp> approach. Plant Biotechnology Journal, 2017, 15, 367-378.	8.3	163
32	Terrific Protein Traffic: The Mystery of Effector Protein Delivery by Filamentous Plant Pathogens. Science, 2009, 324, 748-750.	12.6	156
33	ESTABLISHMENT OFBIOTROPHY BYPARASITICFUNGI ANDREPROGRAMMING OFHOSTCELLS FORDISEASERESISTANCE. Annual Review of Phytopathology, 2003, 41, 641-667.	7.8	150
34	Cell biology of the plant–powdery mildew interaction. Current Opinion in Plant Biology, 2011, 14, 738-746.	7.1	148
35	Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics, 2018, 19, 381.	2.8	138
36	A reference map of the Arabidopsis thaliana mature pollen proteome. Biochemical and Biophysical Research Communications, 2005, 337, 1257-1266.	2.1	137

#	Article	IF	CITATIONS
37	A contiguous 60 kb genomic stretch from barley reveals molecular evidence for gene islands in a monocot genome. Nucleic Acids Research, 1998, 26, 1056-1062.	14.5	135
38	Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochemical Society Transactions, 2005, 33, 389-392.	3.4	135
39	Ionotropic glutamate receptor (iGluR)-like channels mediate MAMP-induced calcium influx in <i>Arabidopsis thaliana</i> . Biochemical Journal, 2011, 440, 355-373.	3.7	130
40	Tryptophan-Derived Metabolites Are Required for Antifungal Defense in the Arabidopsis <i>mlo2</i> Mutant. Plant Physiology, 2010, 152, 1544-1561.	4.8	121
41	Functional Conservation of Wheat and Rice Mlo Orthologs in Defense Modulation to the Powdery Mildew Fungus. Molecular Plant-Microbe Interactions, 2002, 15, 1069-1077.	2.6	115
42	Lipid rafts in plants. Planta, 2005, 223, 5-19.	3.2	113
43	Plasma Membrane Calcium ATPases Are Important Components of Receptor-Mediated Signaling in Plant Immune Responses and Development Â. Plant Physiology, 2012, 159, 798-809.	4.8	112
44	A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21896-21901.	7.1	110
45	Conserved ERAD-Like Quality Control of a Plant Polytopic Membrane Protein. Plant Cell, 2005, 17, 149-163.	6.6	107
46	The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. Plant Methods, 2006, 2, 12.	4.3	105
47	The fungal ribonuclease-like effector protein CSEP0064/BEC1054 represses plant immunity and interferes with degradation of host ribosomal RNA. PLoS Pathogens, 2019, 15, e1007620.	4.7	105
48	NOD-like receptor-mediated plant immunity: from structure to cell death. Nature Reviews Immunology, 2021, 21, 305-318.	22.7	103
49	Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Functional Plant Biology, 2008, 35, 1255.	2.1	101
50	Rapid evolution in plant–microbe interactions – a molecular genomics perspective. New Phytologist, 2020, 225, 1134-1142.	7.3	96
51	Multiple pairs of allelic MLA immune receptor-powdery mildew AVRA effectors argue for a direct recognition mechanism. ELife, 2019, 8, .	6.0	96
52	SnapShot: Plant Immune Response Pathways. Cell, 2009, 136, 978.e1-978.e3.	28.9	95
53	mlo-based powdery mildew immunity: silver bullet or simply non-host resistance?. Molecular Plant Pathology, 2006, 7, 605-610.	4.2	94
54	Two Seven-Transmembrane Domain MILDEW RESISTANCE LOCUS O Proteins Cofunction in <i>Arabidopsis</i> Root Thigmomorphogenesis Â. Plant Cell, 2009, 21, 1972-1991.	6.6	94

#	Article	IF	CITATIONS
55	Expression analysis of the AtMLO Gene Family Encoding Plant-Specific Seven-Transmembrane Domain Proteins. Plant Molecular Biology, 2006, 60, 583-597.	3.9	91
56	Identification of Arabidopsis Loci Required for Susceptibility to the Downy Mildew Pathogen Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions, 2005, 18, 583-592.	2.6	89
57	The Powdery Mildew Disease of Arabidopsis: A Paradigm for the Interaction between Plants and Biotrophic Fungi. The Arabidopsis Book, 2008, 6, e0115.	0.5	89
58	Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant Molecular Biology, 1996, 32, 831-848.	3.9	83
59	Dynamic cellular responses in plant–microbe interactions. Current Opinion in Plant Biology, 2005, 8, 625-631.	7.1	80
60	Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis?. Current Opinion in Plant Biology, 2011, 14, 392-399.	7.1	80
61	Comprehensive Phylogenetic Analysis Sheds Light on the Diversity and Origin of the MLO Family of Integral Membrane Proteins. Genome Biology and Evolution, 2016, 8, 878-895.	2.5	79
62	The need for speed: compartmentalized genome evolution in filamentous phytopathogens. Molecular Plant Pathology, 2019, 20, 3-7.	4.2	79
63	Conserved extracellular cysteine residues and cytoplasmic loop–loop interplay are required for functionality of the heptahelical MLO protein. Biochemical Journal, 2005, 385, 243-254.	3.7	77
64	Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews. Frontiers in Plant Science, 2016, 7, 123.	3.6	77
65	Editorial: Biotrophic Plant-Microbe Interactions. Frontiers in Plant Science, 2017, 8, 192.	3.6	74
66	Rapid quantification of plant-powdery mildew interactions by qPCR and conidiospore counts. Plant Methods, 2012, 8, 35.	4.3	72
67	Cytoskeleton functions in plant–microbe interactions. Physiological and Molecular Plant Pathology, 2007, 71, 135-148.	2.5	68
68	Combined Bimolecular Fluorescence Complementation and Förster Resonance Energy Transfer Reveals Ternary SNARE Complex Formation in Living Plant Cells. Plant Physiology, 2010, 152, 1135-1147.	4.8	68
69	Novel induced mlo mutant alleles in combination with site-directed mutagenesis reveal functionally important domains in the heptahelical barley Mlo protein. BMC Plant Biology, 2010, 10, 31.	3.6	67
70	Interaction of a <i><scp>B</scp>lumeria graminis</i> f. sp. <i>hordei</i> effector candidate with a barley <scp>ARFâ€GAP</scp> suggests that host vesicle trafficking is a fungal pathogenicity target. Molecular Plant Pathology, 2014, 15, 535-549.	4.2	66
71	The Role of <i>Arabidopsis</i> Heterotrimeric G-Protein Subunits in MLO2 Function and MAMP-Triggered Immunity. Molecular Plant-Microbe Interactions, 2013, 26, 991-1003.	2.6	65
72	Antagonistic Control of Powdery Mildew Host Cell Entry by Barley Calcium-Dependent Protein Kinases (CDPKs). Molecular Plant-Microbe Interactions, 2007, 20, 1213-1221.	2.6	60

Ralph Panstruga

#	Article	IF	CITATIONS
73	Discovery of Novel Conserved Peptide Domains by Ortholog Comparison within Plant Multi-Protein Families. Plant Molecular Biology, 2005, 59, 485-500.	3.9	57
74	Activity Determinants and Functional Specialization of Arabidopsis PEN1 Syntaxin in Innate Immunity. Journal of Biological Chemistry, 2008, 283, 26974-26984.	3.4	57
75	Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem. The Arabidopsis Book, 2016, 14, e0184.	0.5	56
76	Natural genetic resources of <i>Arabidopsis thaliana</i> reveal a high prevalence and unexpected phenotypic plasticity of <i>RPW8â€</i> mediated powdery mildew resistance. New Phytologist, 2008, 177, 725-742.	7.3	52
77	What is the Molecular Basis of Nonhost Resistance?. Molecular Plant-Microbe Interactions, 2020, 33, 1253-1264.	2.6	47
78	Live and let live: insights into powdery mildew disease and resistance. Molecular Plant Pathology, 2002, 3, 495-502.	4.2	45
79	Key Components of Different Plant Defense Pathways Are Dispensable for Powdery Mildew Resistance of the Arabidopsis mlo2 mlo6 mlo12 Triple Mutant. Frontiers in Plant Science, 2017, 8, 1006.	3.6	45
80	Heterogeneity and lateral compartmentalization of plant plasma membranes. Current Opinion in Plant Biology, 2008, 11, 632-640.	7.1	44
81	A proteomic analysis of powdery mildew (<i>Blumeria graminis</i> f.sp. <i>hordei</i>) conidiospores. Molecular Plant Pathology, 2009, 10, 223-236.	4.2	44
82	Transcriptome analysis of enriched Golovinomyces orontii haustoria by deep 454 pyrosequencing. Fungal Genetics and Biology, 2012, 49, 470-482.	2.1	44
83	Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of <scp><i>A</i></scp> <i>rabidopsis thaliana</i> â€ <scp><i>MILDEW LOCUS O</i></scp> genes. Plant, Cell and Environment, 2014, 37, 2738-2753.	5.7	44
84	A simple test for the cleavage activity of customized endonucleases in plants. Plant Methods, 2016, 12, 18.	4.3	43
85	Small RNAs from cereal powdery mildew pathogens may target host plant genes. Fungal Biology, 2018, 122, 1050-1063.	2.5	41
86	Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends in Immunology, 2008, 29, 159-166.	6.8	40
87	The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Scientific Reports, 2017, 7, 9319.	3.3	40
88	A golden shot: how ballistic single cell transformation boosts the molecular analysis of cereal-mildew interactions. Molecular Plant Pathology, 2004, 5, 141-148.	4.2	36
89	In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria) Tj ETQq1	1 0,78431 2.8	4 rgBT /Overle
90	Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Molecular Plant Pathology, 2019, 20, 463-470.	4.2	35

#	Article	IF	CITATIONS
91	Corruption of host seven-transmembrane proteins by pathogenic microbes: a common theme in animals and plants?. Microbes and Infection, 2003, 5, 429-437.	1.9	34
92	Why did filamentous plant pathogens evolve the potential to secrete hundreds of effectors to enable disease?. Molecular Plant Pathology, 2018, 19, 781-785.	4.2	34
93	Host Cell Entry of Powdery Mildew Is Correlated with Endosomal Transport of Antagonistically Acting VvPEN1 and VvMLO to the Papilla. Molecular Plant-Microbe Interactions, 2013, 26, 1138-1150.	2.6	32
94	Phylogeny and evolution of plant macrophage migration inhibitory factor/D-dopachrome tautomerase-like proteins. BMC Evolutionary Biology, 2015, 15, 64.	3.2	31
95	Nodulation Induces Systemic Resistance of <i>Medicago truncatula</i> and <i>Pisum sativum</i> Against <i>Erysiphe pisi</i> and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. Molecular Plant-Microbe Interactions, 2019, 32, 1243-1255.	2.6	25
96	Arabidopsis MLO2 is a negative regulator of sensitivity to extracellular reactive oxygen species. Plant, Cell and Environment, 2018, 41, 782-796.	5.7	24
97	Rumble in the Effector Jungle: Candidate Effector Proteins in Interactions of Plants with Powdery Mildew and Rust Fungi. Critical Reviews in Plant Sciences, 2019, 38, 255-279.	5.7	23
98	Comparative Analysis of MAMP-induced Calcium Influx in Arabidopsis Seedlings and Protoplasts. Plant and Cell Physiology, 2014, 55, 1813-1825.	3.1	20
99	Cross-Kingdom Analysis of Diversity, Evolutionary History, and Site Selection within the Eukaryotic Macrophage Migration Inhibitory Factor Superfamily. Genes, 2019, 10, 740.	2.4	19
100	Evidence for Allele-Specific Levels of Enhanced Susceptibility of Wheat mlo Mutants to the Hemibiotrophic Fungal Pathogen Magnaporthe oryzae pv. Triticum. Genes, 2020, 11, 517.	2.4	19
101	Dissecting Arabidopsis Gβ Signal Transduction on the Protein Surface Â. Plant Physiology, 2012, 159, 975-983.	4.8	18
102	The <i>Parauncinula polyspora</i> Draft Genome Provides Insights into Patterns of Gene Erosion and Genome Expansion in Powdery Mildew Fungi. MBio, 2019, 10, .	4.1	18
103	Testing the efficiency of dsRNAi constructs in vivo: a transient expression assay based on two fluorescent proteins. Molecular Biology Reports, 2003, 30, 135-140.	2.3	17
104	Molecular characterization ofmlomutants in North American two- and six-rowed malting barley cultivars. Molecular Plant Pathology, 2005, 6, 315-320.	4.2	16
105	Arabidopsis mlo3 mutant plants exhibit spontaneous callose deposition and signs of early leaf senescence. Plant Molecular Biology, 2019, 101, 21-40.	3.9	16
106	Fine mapping and chromosome walking towards the Ror1 locus in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2013, 126, 2969-2982.	3.6	15
107	Plant autoimmunity—fresh insights into an old phenomenon. Plant Physiology, 2022, 188, 1419-1434.	4.8	15
108	Expression and chloroplast-targeting of active phosphoenolpyruvate synthetase from Escherichia coli in Solanum tuberosum. Plant Science, 1997, 127, 191-205.	3.6	12

#	Article	IF	CITATIONS
109	Novel jack-in-the-box effector of the barley powdery mildew pathogen?. Journal of Experimental Botany, 2018, 69, 3511-3514.	4.8	12
110	A fungal powdery mildew pathogen induces extensive local and marginal systemic changes in the <scp><i>Arabidopsis thaliana</i></scp> microbiota. Environmental Microbiology, 2021, 23, 6292-6308.	3.8	12
111	A Short-Read Genome Assembly Resource for Leveillula taurica Causing Powdery Mildew Disease of Sweet Pepper (Capsicum annuum). Molecular Plant-Microbe Interactions, 2020, 33, 782-786.	2.6	11
112	Introduction to a <i><scp>V</scp>irtual <scp>S</scp>pecial <scp>I</scp>ssue</i> on phytopathogen effector proteins. New Phytologist, 2014, 202, 727-730.	7.3	10
113	Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. Journal of Biological Chemistry, 2021, 296, 100611.	3.4	10
114	Widely Conserved Attenuation of Plant MAMP-Induced Calcium Influx by Bacteria Depends on Multiple Virulence Factors and May Involve Desensitization of Host Pattern Recognition Receptors. Molecular Plant-Microbe Interactions, 2019, 32, 608-621.	2.6	9
115	Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. Journal of Biological Chemistry, 2020, 295, 850-867.	3.4	9
116	Ready to fire. Plant Signaling and Behavior, 2008, 3, 505-508.	2.4	8
117	A family of pathogen-induced cysteine-rich transmembrane proteins is involved in plant disease resistance. Planta, 2021, 253, 102.	3.2	8
118	Ultraviolet Mutagenesis Coupled with Next-Generation Sequencing as a Method for Functional Interrogation of Powdery Mildew Genomes. Molecular Plant-Microbe Interactions, 2020, 33, 1008-1021.	2.6	7
119	Beyond Nuclear Ribosomal DNA Sequences: Evolution, Taxonomy, and Closest Known Saprobic Relatives of Powdery Mildew Fungi (Erysiphaceae) Inferred From Their First Comprehensive Genome-Scale Phylogenetic Analyses. Frontiers in Microbiology, 0, 13, .	3.5	7
120	Powdery mildew genomes reloaded. New Phytologist, 2014, 202, 13-14.	7.3	6
121	The Role of Seven-Transmembrane Domain MLO Proteins, Heterotrimeric C-Proteins, and Monomeric RAC/ROPs in Plant Defense. Signaling and Communication in Plants, 2010, , 197-220.	0.7	6
122	On the ligand binding profile and desensitization of plant ionotropic glutamate receptor (iGluR)-like channels functioning in MAMP-triggered Ca2+influx. Plant Signaling and Behavior, 2012, 7, 1373-1377.	2.4	5
123	Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. Journal of Biological Chemistry, 2020, 295, 850-867.	3.4	5
124	An advanced method for the release, enrichment and purification of high-quality Arabidopsis thaliana rosette leaf trichomes enables profound insights into the trichome proteome. Plant Methods, 2022, 18, 12.	4.3	5
125	Rapid evolution in the tugâ€ofâ€war between microbes and plants. New Phytologist, 2018, 219, 12-14.	7.3	4
126	A <scp>crossâ€kingdom</scp> view on the immunomodulatory role of <scp>MIF</scp> / <scp>Dâ€DT</scp> proteins in mammalian and plant <i>Pseudomonas</i> infections. Immunology, 2022, 166, 287-298.	4.4	4

#	Article	IF	CITATIONS
127	Introduction to a <i>Virtual Special Issue</i> on cell biology at the plant–microbe interface. New Phytologist, 2015, 207, 931-938.	7.3	3
128	Chemical suppressors of <i>mlo-</i> mediated powdery mildew resistance. Bioscience Reports, 2017, 37, .	2.4	3
129	Alloxan Disintegrates the Plant Cytoskeleton and Suppresses mlo-Mediated Powdery Mildew Resistance. Plant and Cell Physiology, 2020, 61, 505-518.	3.1	3
130	First draft genome assemblies of Pleochaeta shiraiana and Phyllactinia moricola, two tree-parasitic powdery mildew fungi with hemiendophytic mycelia. Phytopathology, 2021, , .	2.2	3
131	Gene Gun-Mediated Transient Gene Expression for Functional Studies in Plant Immunity. Methods in Molecular Biology, 2022, , 63-77.	0.9	3
132	Introduction to a <i>Virtual Special Issue</i> on pathogenic plant–fungus interactions. New Phytologist, 2010, 188, 907-910.	7.3	2
133	Bacterial <scp>RNA</scp> – a new <scp>MAMP</scp> on the block?. New Phytologist, 2016, 209, 458-460.	7.3	2
134	Studying Plant MIF/D-DT-Like Genes and Proteins (MDLs). Methods in Molecular Biology, 2020, 2080, 249-261.	0.9	2
135	Focus Issue Editorial: Biotic Stress. Plant Physiology, 2019, 179, 1193-1195.	4.8	1
136	Defence Responses in Plants. , 2009, , 363-385.		0
137	One microRNAâ€like small RNA – two silencing pathways?. New Phytologist, 2021, 232, 464-467.	7.3	0