Yongmei Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4194493/publications.pdf

Version: 2024-02-01

		257450	214800
58	2,399	24	47
papers	citations	h-index	g-index
Γ0	F0	Γ0	2252
59	59	59	2353
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Analysis of 3- <i>O</i> -Sulfated Heparan Sulfate Using Isotopically Labeled Oligosaccharide Calibrants. Analytical Chemistry, 2022, 94, 2950-2957.	6.5	11
2	Chemoenzymatic Synthesis of Homogeneous Heparan Sulfate and Chondroitin Sulfate Chimeras. ACS Chemical Biology, 2022, 17, 1207-1214.	3.4	5
3	Construction of heparan sulfate microarray for investigating the binding of specific saccharide sequences to proteins. Glycobiology, 2021, 31, 188-199.	2.5	16
4	Ultrasensitive small molecule fluorogenic probe for human heparanase. Chemical Science, 2021, 12, 239-246.	7.4	12
5	Investigation of the biological functions of heparan sulfate using a chemoenzymatic synthetic approach. RSC Chemical Biology, 2021, 2, 702-712.	4.1	16
6	Comparison of angiopoietin-like protein 3 and 4 reveals structural and mechanistic similarities. Journal of Biological Chemistry, 2021, 296, 100312.	3.4	8
7	Enzyme-Based Methods to Synthesize Homogeneous Glycosaminoglycan Oligosaccharides. , 2021, , 706-714.		1
8	Deciphering the substrate recognition mechanisms of the heparan sulfate 3- <i>O</i> -sulfotransferase-3. RSC Chemical Biology, 2021, 2, 1239-1248.	4.1	6
9	Synthesis of 3- <i>O</i> -Sulfated Heparan Sulfate Oligosaccharides Using 3- <i>O</i> -Sulfotransferase Isoform 4. ACS Chemical Biology, 2021, 16, 2026-2035.	3.4	8
10	Structural and Substrate Specificity Analysis of 3- <i>O</i> -Sulfotransferase Isoform 5 to Synthesize Heparan Sulfate. ACS Catalysis, 2021, 11, 14956-14966.	11.2	5
11	3―O â€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie, 2020, 132, 1834-1843.	2.0	2
12	3â€ <i>O</i> â€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie - International Edition, 2020, 59, 1818-1827.	13.8	71
13	Characterization of the interaction between platelet factor 4 and homogeneous synthetic low molecular weight heparins. Journal of Thrombosis and Haemostasis, 2020, 18, 390-398.	3.8	12
14	Using engineered 6- <i>O</i> -sulfotransferase to improve the synthesis of anticoagulant heparin. Organic and Biomolecular Chemistry, 2020, 18, 8094-8102.	2.8	7
15	Quantitative analysis of heparan sulfate using isotopically labeled calibrants. Communications Biology, 2020, 3, 425.	4.4	16
16	Synthetic anticoagulant heparan sulfate attenuates liver ischemia reperfusion injury. Scientific Reports, 2020, 10, 17187.	3.3	13
17	Chemical synthesis of human syndecan-4 glycopeptide bearing O-, N-sulfation and multiple aspartic acids for probing impacts of the glycan chain and the core peptide on biological functions. Chemical Science, 2020, 11, 6393-6404.	7.4	18
18	Design of anti-inflammatory heparan sulfate to protect against acetaminophen-induced acute liver failure. Science Translational Medicine, 2020, 12, .	12.4	60

#	Article	IF	Citations
19	Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nature Communications, 2020, 11, 1481.	12.8	39
20	Enzymatic Synthesis of Chondroitin Sulfate E to Attenuate Bacteria Lipopolysaccharide-Induced Organ Damage. ACS Central Science, 2020, 6, 1199-1207.	11.3	23
21	Frontispiz: 3â€ <i>O</i> àâ€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie, 2020, 132, .	2.0	0
22	Frontispiece: 3â€∢i>Oà€Sulfation of Heparan Sulfate Enhances Tau Interaction and Cellular Uptake. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
23	Mouse Gut Microbiome-Encoded \hat{l}^2 -Glucuronidases Identified Using Metagenome Analysis Guided by Protein Structure. MSystems, 2019, 4, .	3.8	34
24	Specificity and action pattern of heparanase Bp, a \hat{l}^2 -glucuronidase from Burkholderia pseudomallei. Glycobiology, 2019, 29, 572-581.	2.5	10
25	Circulating heparin oligosaccharides rapidly target the hippocampus in sepsis, potentially impacting cognitive functions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9208-9213.	7.1	45
26	Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides. Angewandte Chemie - International Edition, 2018, 57, 5340-5344.	13.8	49
27	A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. Journal of the American Society for Mass Spectrometry, 2018, 29, 1153-1165.	2.8	12
28	Controlled Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides. Angewandte Chemie, 2018, 130, 5438-5442.	2.0	10
29	Active site flexibility revealed in crystal structures of <i>Parabacteroides merdae</i> βâ€glucuronidase from the human gut microbiome. Protein Science, 2018, 27, 2010-2022.	7.6	20
30	3- O sulfation of heparin leads to hepatotropism and longer circulatory half-life. Thrombosis Research, 2018, 167, 80-87.	1.7	7
31	Downstream Products are Potent Inhibitors of the Heparan Sulfate 2-O-Sulfotransferase. Scientific Reports, 2018, 8, 11832.	3.3	11
32	Chemoenzymatic synthesis of unmodified heparin oligosaccharides: cleavage of p-nitrophenyl glucuronide by alkaline and Smith degradation. Organic and Biomolecular Chemistry, 2017, 15, 1222-1227.	2.8	16
33	Construction and characterisation of a heparan sulphate heptasaccharide microarray. Chemical Communications, 2017, 53, 1743-1746.	4.1	40
34	An Atlas of \hat{l}^2 -Glucuronidases in the Human Intestinal Microbiome. Structure, 2017, 25, 967-977.e5.	3.3	172
35	Synthesis of 3- <i>O</i> -Sulfated Oligosaccharides to Understand the Relationship between Structures and Functions of Heparan Sulfate. Journal of the American Chemical Society, 2017, 139, 5249-5256.	13.7	79
36	Heparan Sulfate Domains Required for Fibroblast Growth Factor 1 and 2 Signaling through Fibroblast Growth Factor Receptor 1c. Journal of Biological Chemistry, 2017, 292, 2495-2509.	3.4	43

#	Article	IF	Citations
37	Synthetic oligosaccharides can replace animal-sourced low–molecular weight heparins. Science Translational Medicine, 2017, 9, .	12.4	82
38	Structure Based Substrate Specificity Analysis of Heparan Sulfate 6- <i>O</i> -Sulfotransferases. ACS Chemical Biology, 2017, 12, 73-82.	3.4	36
39	Gas-Phase Analysis of the Complex of Fibroblast GrowthFactor 1 with Heparan Sulfate: A Traveling Wave Ion Mobility Spectrometry (TWIMS) and Molecular Modeling Study. Journal of the American Society for Mass Spectrometry, 2017, 28, 96-109.	2.8	18
40	Modernization of Enoxaparin Molecular Weight Determination Using Homogeneous Standards. Pharmaceuticals, 2017, 10, 66.	3.8	5
41	Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate. Scientific Reports, 2016, 6, 26245.	3.3	44
42	In vitro and in vivo characterization of a reversible synthetic heparin analog. Thrombosis Research, 2016, 138, 121-129.	1.7	7
43	Expanding the 3- <i>O</i> -Sulfate Proteomeâ€"Enhanced Binding of Neuropilin-1 to 3- <i>O</i> -Sulfated Heparan Sulfate Modulates Its Activity. ACS Chemical Biology, 2016, 11, 971-980.	3.4	57
44	Divergent Synthesis of Heparan Sulfate Oligosaccharides. Journal of Organic Chemistry, 2015, 80, 12265-12279.	3.2	50
45	Design and synthesis of active heparan sulfate-based probes. Chemical Communications, 2015, 51, 11019-11021.	4.1	9
46	Green Solvents in Carbohydrate Chemistry: From Raw Materials to Fine Chemicals. Chemical Reviews, 2015, 115, 6811-6853.	47.7	296
47	Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate. Journal of Biological Chemistry, 2015, 290, 20427-20437.	3.4	32
48	Abstract 594: Characterization of Anti-thrombotic and Anti-inflammatory Properties of New Synthetic, Protamine Reversible Low Molecular Weight Heparin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
49	A Computational Framework for Heparan Sulfate Sequencing Using High-resolution Tandem Mass Spectra. Molecular and Cellular Proteomics, 2014, 13, 2490-2502.	3.8	25
50	Homogeneous low-molecular-weight heparins with reversible anticoagulant activity. Nature Chemical Biology, 2014, 10, 248-250.	8.0	173
51	Chemoenzymatic synthesis and structural characterization of 2-O-sulfated glucuronic acid-containing heparan sulfate hexasaccharides. Glycobiology, 2014, 24, 681-692.	2.5	29
52	Hs3st3-Modified Heparan Sulfate Controls KIT+ Progenitor Expansion by Regulating 3-O-Sulfotransferases. Developmental Cell, 2014, 29, 662-673.	7.0	64
53	Directing the biological activities of heparan sulfate oligosaccharides using a chemoenzymatic approach. Glycobiology, 2012, 22, 96-106.	2.5	22
54	Chemoenzymatic synthesis of heparan sulfate and heparin. Biocatalysis and Biotransformation, 2012, 30, 296-308.	2.0	10

YONGMEI XU

#	Article	IF	CITATIONS
55	Chemoenzymatic Synthesis of Heparin Oligosaccharides with both Anti-factor Xa and Anti-factor IIa Activities. Journal of Biological Chemistry, 2012, 287, 29054-29061.	3.4	51
56	Chemoenzymatic Synthesis of Homogeneous Ultralow Molecular Weight Heparins. Science, 2011, 334, 498-501.	12.6	353
57	Inside Cover: Preactivation-Based, One-Pot Combinatorial Synthesis of Heparin-like Hexasaccharides for the Analysis of Heparin-Protein Interactions (Chem. Eur. J. 28/2010). Chemistry - A European Journal, 2010, 16, 8218-8218.	3.3	1
58	Chemoenzymatic Design of Heparan Sulfate Oligosaccharides*. Journal of Biological Chemistry, 2010, 285, 34240-34249.	3.4	138