## Stephen P Cramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4192182/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | From inert gas to fertilizer, fuel and fine chemicals: N2 reduction and fixation. Catalysis Today, 2022, 387, 186-196.                                                                                                                                     | 4.4  | 4         |
| 2  | Carbon monoxide binding to α-R277H Mo-nitrogenase – Evidence for multiple pH-dependent species from<br>IR-monitored photolysis. Journal of Inorganic Biochemistry, 2022, 232, 111806.                                                                      | 3.5  | 1         |
| 3  | Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten<br>und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]â€Hydrogenasen. Angewandte<br>Chemie, 2021, 133, 15988-15996.                        | 2.0  | 0         |
| 4  | Exploring Structure and Function of Redox Intermediates in [NiFe]â€Hydrogenases by an Advanced<br>Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes. Angewandte<br>Chemie - International Edition, 2021, 60, 15854-15862.    | 13.8 | 15        |
| 5  | Vibrational Perturbation of the [FeFe] Hydrogenase H-Cluster Revealed by<br><sup>13</sup> C <sup>2</sup> H-ADT Labeling. Journal of the American Chemical Society, 2021, 143,<br>8237-8243.                                                                | 13.7 | 4         |
| 6  | Frontispiz: Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten,<br>lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]â€Hydrogenasen.<br>Angewandte Chemie, 2021, 133, .                       | 2.0  | 0         |
| 7  | Frontispiece: Exploring Structure and Function of Redox Intermediates in [NiFe]â€Hydrogenases by an<br>Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes.<br>Angewandte Chemie - International Edition, 2021, 60, . | 13.8 | 0         |
| 8  | NRVS and DFT of MitoNEET: Understanding the Special Vibrational Structure of a [2Fe-2S] Cluster with (Cys) <sub>3</sub> (His) <sub>1</sub> Ligation. Biochemistry, 2021, 60, 2419-2424.                                                                    | 2.5  | 3         |
| 9  | Nuclear Resonance Vibrational Spectroscopy: A Modern Tool to Pinpoint Site-Specific Cooperative Processes. Crystals, 2021, 11, 909.                                                                                                                        | 2.2  | 10        |
| 10 | Hydroxy-bridged resting states of a [NiFe]-hydrogenase unraveled by cryogenic vibrational spectroscopy and DFT computations. Chemical Science, 2021, 12, 2189-2197.                                                                                        | 7.4  | 17        |
| 11 | High-Frequency Fe–H and Fe–H2 Modes in a trans-Fe(η2-H2)(H) Complex: A Speed Record for Nuclear<br>Resonance Vibrational Spectroscopy. Inorganic Chemistry, 2021, 60, 555-559.                                                                             | 4.0  | 2         |
| 12 | Spectroscopic and Computational Evidence that [FeFe] Hydrogenases Operate Exclusively with CO-Bridged Intermediates. Journal of the American Chemical Society, 2020, 142, 222-232.                                                                         | 13.7 | 63        |
| 13 | <i>In Vitro</i> Assembly as a Tool to Investigate Catalytic Intermediates of [NiFe]-Hydrogenase. ACS Catalysis, 2020, 10, 13890-13894.                                                                                                                     | 11.2 | 13        |
| 14 | Vibrational characterization of a diiron bridging hydride complex – a model for hydrogen catalysis.<br>Chemical Science, 2020, 11, 5487-5493.                                                                                                              | 7.4  | 12        |
| 15 | Caught in the H inact : Crystal Structure and Spectroscopy Reveal a Sulfur Bound to the Active Site of<br>an O 2 â€stable State of [FeFe] Hydrogenase. Angewandte Chemie - International Edition, 2020, 59,<br>16786-16794.                                | 13.8 | 40        |
| 16 | Kristallstruktur und Spektroskopie offenbaren einen Schwefelâ€Liganden am aktiven Zentrum einer O 2<br>â€stabilen [FeFe]â€Hydrogenase. Angewandte Chemie, 2020, 132, 16930.                                                                                | 2.0  | 6         |
| 17 | The large subunit of the regulatory [NiFe]-hydrogenase fromRalstonia eutropha– a minimal hydrogenase?. Chemical Science, 2020, 11, 5453-5465.                                                                                                              | 7.4  | 20        |
| 18 | Nuclear Resonaynce Vibrational Spectroscopy. Biological and Medical Physics Series, 2020, , 257-278.                                                                                                                                                       | 0.4  | 4         |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Insights from 125Te and 57Fe nuclear resonance vibrational spectroscopy: a [4Fe–4Te] cluster from two points of view. Chemical Science, 2019, 10, 7535-7541.                                                                                   | 7.4  | 5         |
| 20 | Asymmetry in the Ligand Coordination Sphere of the [FeFe] Hydrogenase Active Site Is Reflected in the<br>Magnetic Spin Interactions of the Aza-propanedithiolate Ligand. Journal of Physical Chemistry Letters,<br>2019, 10, 6794-6799.        | 4.6  | 22        |
| 21 | Preliminary Assignment of Protonated and Deprotonated Homocitrates in Extracted FeMo-Cofactors<br>by Comparisons with Molybdenum(IV) Lactates and Oxidovanadium Glycolates. Inorganic Chemistry,<br>2019, 58, 2523-2532.                       | 4.0  | 13        |
| 22 | Sterically Stabilized Terminal Hydride of a Diiron Dithiolate. Inorganic Chemistry, 2018, 57, 1988-2001.                                                                                                                                       | 4.0  | 21        |
| 23 | Cluster-Dependent Charge-Transfer Dynamics in Iron–Sulfur Proteins. Biochemistry, 2018, 57, 978-990.                                                                                                                                           | 2.5  | 11        |
| 24 | Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven<br>NAD+-reduction in the presence of O2. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 8-18.                                     | 1.0  | 14        |
| 25 | Highâ€Frequency Fe–H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT.<br>Angewandte Chemie, 2018, 130, 9511-9515.                                                                                                       | 2.0  | 2         |
| 26 | NRVS for Fe in Biology: Experiment and Basic Interpretation. Methods in Enzymology, 2018, 599, 409-425.                                                                                                                                        | 1.0  | 12        |
| 27 | Highâ€Frequency Fe–H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT.<br>Angewandte Chemie - International Edition, 2018, 57, 9367-9371.                                                                                | 13.8 | 14        |
| 28 | Terminal Hydride Species in [FeFe]â€Hydrogenases Are Vibrationally Coupled to the Active Site<br>Environment. Angewandte Chemie, 2018, 130, 10765-10769.                                                                                       | 2.0  | 4         |
| 29 | Terminal Hydride Species in [FeFe]â€Hydrogenases Are Vibrationally Coupled to the Active Site<br>Environment. Angewandte Chemie - International Edition, 2018, 57, 10605-10609.                                                                | 13.8 | 29        |
| 30 | Spectroscopic and Computational Investigations of Ligand Binding to IspH: Discovery of Nonâ€diphosphate Inhibitors. ChemBioChem, 2017, 18, 914-920.                                                                                            | 2.6  | 10        |
| 31 | Direct Observation of an Iron-Bound Terminal Hydride in [FeFe]-Hydrogenase by Nuclear Resonance<br>Vibrational Spectroscopy. Journal of the American Chemical Society, 2017, 139, 4306-4309.                                                   | 13.7 | 155       |
| 32 | Reaction Coordinate Leading to H <sub>2</sub> Production in [FeFe]-Hydrogenase Identified by Nuclear<br>Resonance Vibrational Spectroscopy and Density Functional Theory. Journal of the American Chemical<br>Society, 2017, 139, 16894-16902. | 13.7 | 78        |
| 33 | Ultrafast Charge-Transfer Dynamics in the Iron–Sulfur Complex of <i>Rhodobacter capsulatus</i> Ferredoxin VI. Journal of Physical Chemistry Letters, 2017, 8, 4498-4503.                                                                       | 4.6  | 5         |
| 34 | Temperature and radiation effects at the fluorine K-edge in LiF. Journal of Electron Spectroscopy and Related Phenomena, 2017, 218, 30-34.                                                                                                     | 1.7  | 9         |
| 35 | Synchrotron-based Nickel Mössbauer Spectroscopy. Inorganic Chemistry, 2016, 55, 6866-6872.                                                                                                                                                     | 4.0  | 14        |
| 36 | Nitrosylation of Nitricâ€Oxide‣ensing Regulatory Proteins Containing [4Feâ€4S] Clusters Gives Rise to<br>Multiple Iron–Nitrosyl Complexes. Angewandte Chemie, 2016, 128, 14795-14799.                                                          | 2.0  | 4         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | High-resolution monochromator for iron nuclear resonance vibrational spectroscopy of biological samples. Japanese Journal of Applied Physics, 2016, 55, 122401.                                                                                                                                                                                                          | 1.5  | 9         |
| 38 | Characterization of the [3Fe–4S] <sup>0/1+</sup> cluster from the D14C variant of Pyrococcus furiosus ferredoxin via combined NRVS and DFT analyses. Dalton Transactions, 2016, 45, 7215-7219.                                                                                                                                                                           | 3.3  | 8         |
| 39 | Is trehalose an effective quenching agent of Azotobacter vinelandii Mo-nitrogenase turnover?.<br>Inorganica Chimica Acta, 2016, 453, 74-77.                                                                                                                                                                                                                              | 2.4  | 2         |
| 40 | Asymmetric Synthesis of Homocitric Acid Lactone. Journal of Organic Chemistry, 2016, 81, 11404-11408.                                                                                                                                                                                                                                                                    | 3.2  | 8         |
| 41 | Nitrosylation of Nitricâ€Oxideâ€Sensing Regulatory Proteins Containing [4Feâ€4S] Clusters Gives Rise to<br>Multiple Iron–Nitrosyl Complexes. Angewandte Chemie - International Edition, 2016, 55, 14575-14579.                                                                                                                                                           | 13.8 | 33        |
| 42 | The Radical SAM Enzyme HydG Requires Cysteine and a Dangler Iron for Generating an Organometallic<br>Precursor to the [FeFe]-Hydrogenase H-Cluster. Journal of the American Chemical Society, 2016, 138,<br>1146-1149.                                                                                                                                                   | 13.7 | 46        |
| 43 | NsrR from Streptomyces coelicolor Is a Nitric Oxide-sensing [4Fe-4S] Cluster Protein with a Specialized Regulatory Function. Journal of Biological Chemistry, 2015, 290, 12689-12704.                                                                                                                                                                                    | 3.4  | 77        |
| 44 | Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O <sub>2</sub> -tolerant NAD <sup>+</sup> -reducing [NiFe] hydrogenase. Chemical Science, 2015, 6, 1055-1060.                                                                                                                                | 7.4  | 27        |
| 45 | Spectroscopic Investigations of [FeFe] Hydrogenase Maturated with<br>[ <sup>57</sup> Fe <sub>2</sub> (adt)(CN) <sub>2</sub> (CO) <sub>4</sub> ] <sup>2–</sup> . Journal of the<br>American Chemical Society, 2015, 137, 8998-9005.                                                                                                                                       | 13.7 | 69        |
| 46 | Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy —<br>Observation of a candidate promoting vibration. Journal of Inorganic Biochemistry, 2015, 153, 128-135.                                                                                                                                                               | 3.5  | 13        |
| 47 | Docking and Migration of Carbon Monoxide in Nitrogenase: The Case for Gated Pockets from Infrared Spectroscopy and Molecular Dynamics. Biochemistry, 2015, 54, 3314-3319.                                                                                                                                                                                                | 2.5  | 21        |
| 48 | Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nature<br>Communications, 2015, 6, 7890.                                                                                                                                                                                                                                    | 12.8 | 96        |
| 49 | Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11455-11460.                                                                                                                                                                            | 7.1  | 60        |
| 50 | The HydG Enzyme Generates an Fe(CO) <sub>2</sub> (CN) Synthon in Assembly of the FeFe Hydrogenase<br>H-Cluster. Science, 2014, 343, 424-427.                                                                                                                                                                                                                             | 12.6 | 109       |
| 51 | Structural Characterization of CO-Inhibited Mo-Nitrogenase by Combined Application of Nuclear<br>Resonance Vibrational Spectroscopy, Extended X-ray Absorption Fine Structure, and Density<br>Functional Theory: New Insights into the Effects of CO Binding and the Role of the Interstitial Atom.<br>Journal of the American Chemical Society, 2014, 136, 15942-15954. | 13.7 | 40        |
| 52 | α-Hydroxy coordination of mononuclear vanadyl citrate, malate and S-citramalate with N-heterocycle<br>ligand, implying a new protonation pathway of iron–vanadium cofactor in nitrogenase. Journal of<br>Inorganic Biochemistry, 2014, 141, 114-120.                                                                                                                     | 3.5  | 31        |
| 53 | In Silico Dynamics of Carbon Monoxide in the Active Site Pocket of Nitrogenase. Biophysical Journal, 2014, 106, 608a.                                                                                                                                                                                                                                                    | 0.5  | 0         |
| 54 | A Practical Guide for Nuclear Resonance Vibrational Spectroscopy (NRVS) of Biochemical Samples and<br>Model Compounds. Methods in Molecular Biology, 2014, 1122, 125-137.                                                                                                                                                                                                | 0.9  | 23        |

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Characterization of [4Fe-4S] Cluster Vibrations and Structure in Nitrogenase Fe Protein at Three<br>Oxidation Levels via Combined NRVS, EXAFS, and DFT Analyses. Journal of the American Chemical<br>Society, 2013, 135, 2530-2543.                                | 13.7 | 41        |
| 56 | Structure and spectroscopy of a bidentate bis-homocitrate dioxo-molybdenum(VI) complex: Insights relevant to the structure and properties of the FeMo-cofactor in nitrogenase. Journal of Inorganic Biochemistry, 2013, 118, 100-106.                              | 3.5  | 19        |
| 57 | Observation of the FeCN and FeCO Vibrations in the Active Site of [NiFe] Hydrogenase by Nuclear<br>Resonance Vibrational Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 724-728.                                                             | 13.8 | 60        |
| 58 | Inelastic X-ray Scattering of a Transition-Metal Complex (FeCl <sub>4</sub> <sup>–</sup> ): Vibrational Spectroscopy for All Normal Modes. Inorganic Chemistry, 2013, 52, 6767-6769.                                                                               | 4.0  | 7         |
| 59 | Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy below 100â€eV:<br>probing first-row transition-metal <i>M</i> -edges in chemical complexes. Journal of Synchrotron<br>Radiation, 2013, 20, 614-619.                        | 2.4  | 7         |
| 60 | Nuclear Resonance Vibrational Spectroscopy and Electron Paramagnetic Resonance Spectroscopy of<br><sup>57</sup> Fe-Enriched [FeFe] Hydrogenase Indicate Stepwise Assembly of the H-Cluster.<br>Biochemistry, 2013, 52, 818-826.                                    | 2.5  | 33        |
| 61 | Enantioselective Synthesis of Isotopically Labeled Homocitric Acid Lactone. Organic Letters, 2013, 15, 5615-5617.                                                                                                                                                  | 4.6  | 8         |
| 62 | Nuclear resonance vibrational spectroscopy (NRVS) of rubredoxin and MoFe protein crystals.<br>Hyperfine Interactions, 2013, 222, 77-90.                                                                                                                            | 0.5  | 10        |
| 63 | Redox, haem and CO in enzymatic catalysis and regulation. Biochemical Society Transactions, 2012, 40, 501-507.                                                                                                                                                     | 3.4  | 13        |
| 64 | Exploration of synchrotron Mössbauer microscopy with micrometer resolution: forward and a new backscattering modality on natural samples. Journal of Synchrotron Radiation, 2012, 19, 814-820.                                                                     | 2.4  | 14        |
| 65 | IRâ€Monitored Photolysis of COâ€Inhibited Nitrogenase: A Major EPRâ€Silent Species with Coupled Terminal<br>CO Ligands. Chemistry - A European Journal, 2012, 18, 16349-16357.                                                                                     | 3.3  | 40        |
| 66 | EXAFS and NRVS Reveal a Conformational Distortion of the FeMo-cofactor in the MoFe Nitrogenase<br>Propargyl Alcohol Complex. Journal of Inorganic Biochemistry, 2012, 112, 85-92.                                                                                  | 3.5  | 50        |
| 67 | Real sample temperature: a critical issue in the experiments of nuclear resonant vibrational spectroscopyÂon biological samples. Journal of Synchrotron Radiation, 2012, 19, 257-263.                                                                              | 2.4  | 10        |
| 68 | Characterization of a synthetic peroxodiiron(iii) protein model complex by nuclear resonance vibrational spectroscopy. Chemical Communications, 2011, 47, 10945.                                                                                                   | 4.1  | 15        |
| 69 | Fe–H/D stretching and bending modes in nuclear resonant vibrational, Raman and infrared spectroscopies: Comparisons of density functional theory and experiment. Faraday Discussions, 2011, 148, 409-420.                                                          | 3.2  | 29        |
| 70 | Dynamics of the [4Fe-4S] Cluster in <i>Pyrococcus furiosus</i> D14C Ferredoxin via Nuclear<br>Resonance Vibrational and Resonance Raman Spectroscopies, Force Field Simulations, and Density<br>Functional Theory Calculations. Biochemistry, 2011, 50, 5220-5235. | 2.5  | 38        |
| 71 | Photolysis of Hi O Nitrogenase – Observation of a Plethora of Distinct CO Species Using Infrared Spectroscopy. European Journal of Inorganic Chemistry, 2011, 2011, 2064-2074.                                                                                     | 2.0  | 42        |
| 72 | Cell-free H-cluster Synthesis and [FeFe] Hydrogenase Activation: All Five CO and CNâ^' Ligands Derive from Tyrosine. PLoS ONE, 2011, 6, e20346.                                                                                                                    | 2.5  | 79        |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Observation of Terahertz Vibrations in the Nitrogenase FeMo Cofactor by Femtosecond Pump–Probe<br>Spectroscopy. Angewandte Chemie - International Edition, 2010, 49, 3912-3915.                                                                                      | 13.8 | 10        |
| 74 | High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia coli. PLoS ONE, 2010, 5, e15491.                                                                                                                                                            | 2.5  | 144       |
| 75 | Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10448-10453.                                                                   | 7.1  | 129       |
| 76 | Characterization of Iron Dinitrosyl Species Formed in the Reaction of Nitric Oxide with a Biological<br>Rieske Center. Journal of the American Chemical Society, 2010, 132, 18168-18176.                                                                             | 13.7 | 126       |
| 77 | [FeFe]-Hydrogenase Maturation: HydC-Catalyzed Synthesis of Carbon Monoxide. Journal of the<br>American Chemical Society, 2010, 132, 9247-9249.                                                                                                                       | 13.7 | 149       |
| 78 | Identification of Protein-Bound Dinitrosyl Iron Complexes by Nuclear Resonance Vibrational<br>Spectroscopy. Journal of the American Chemical Society, 2010, 132, 6914-6916.                                                                                          | 13.7 | 72        |
| 79 | Molybdenum X-ray absorption edges from 200 to 20,000eV: The benefits of soft X-ray spectroscopy for chemical speciation. Journal of Inorganic Biochemistry, 2009, 103, 157-167.                                                                                      | 3.5  | 40        |
| 80 | A novel solution reaction of hexahydridoferrate(4â^') with iron(II) that produces iron particles.<br>Inorganica Chimica Acta, 2008, 361, 1552-1554.                                                                                                                  | 2.4  | 2         |
| 81 | X-ray photochemistry in iron complexes from Fe(0) to Fe(Ⅳ) – Can a bug become a feature?. Inorganica<br>Chimica Acta, 2008, 361, 1157-1165.                                                                                                                          | 2.4  | 31        |
| 82 | A Combined NRVS and DFT Study of Fe <sup>IV</sup> O Model Complexes: A Diagnostic Method for the<br>Elucidation of Nonâ€Heme Iron Enzyme Intermediates. Angewandte Chemie - International Edition, 2008,<br>47, 9071-9074.                                          | 13.8 | 49        |
| 83 | Characterization of the Fe Site in Ironâ ´`Sulfur Cluster-Free Hydrogenase (Hmd) and of a Model<br>Compound via Nuclear Resonance Vibrational Spectroscopy (NRVS). Inorganic Chemistry, 2008, 47,<br>3969-3977.                                                      | 4.0  | 97        |
| 84 | Extended X-ray Absorption Fine Structure and Nuclear Resonance Vibrational Spectroscopy Reveal<br>that NifB-co, a FeMo-co Precursor, Comprises a 6Fe Core with an Interstitial Light Atom. Journal of the<br>American Chemical Society, 2008, 130, 5673-5680.        | 13.7 | 59        |
| 85 | Dynamics ofRhodobacter capsulatus[2Fe-2S] Ferredoxin VI andAquifex aeolicusFerredoxin 5 via<br>Nuclear Resonance Vibrational Spectroscopy (NRVS) and Resonance Raman Spectroscopyâ€.<br>Biochemistry, 2008, 47, 6612-6627.                                           | 2.5  | 34        |
| 86 | ldentification of a Moâ^'Feâ^'S Cluster on NifEN by Mo K-Edge Extended X-ray Absorption Fine Structure.<br>Journal of the American Chemical Society, 2007, 129, 3060-3061.                                                                                           | 13.7 | 17        |
| 87 | In Situ X-Ray Absorption Spectroscopic Study of Li[sub 1.05]Ni[sub 0.35]Co[sub 0.25]Mn[sub 0.4]O[sub<br>2] Cathode Material Coated with LiCoO[sub 2]. Journal of the Electrochemical Society, 2007, 154, A534.                                                       | 2.9  | 42        |
| 88 | Characterization of a Genuine Iron(V)â^'Nitrido Species by Nuclear Resonant Vibrational Spectroscopy<br>Coupled to Density Functional Calculations. Journal of the American Chemical Society, 2007, 129,<br>11053-11060.                                             | 13.7 | 70        |
| 89 | Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy – interpretation by molecular mechanics. Journal of Inorganic Biochemistry, 2007, 101, 375-384. | 3.5  | 17        |
| 90 | Dynamics of an [Fe4S4(SPh)4]2? cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields. Dalton Transactions, 2006, , 2192.                               | 3.3  | 33        |

| #   | Article                                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | How Nitrogenase Shakes â^' Initial Information about Pâ^'Cluster and FeMo-cofactor Normal Modes<br>from Nuclear Resonance Vibrational Spectroscopy (NRVS). Journal of the American Chemical Society,<br>2006, 128, 7608-7612.                                                      | 13.7 | 73        |
| 92  | Resonant inelastic X-ray scattering (RIXS) spectroscopy at the Mn K absorption pre-edge—a direct probe of the 3d orbitals. Journal of Physics and Chemistry of Solids, 2005, 66, 2163-2167.                                                                                        | 4.0  | 31        |
| 93  | X-ray magnetic circular dichroism—a high energy probe of magnetic properties. Coordination<br>Chemistry Reviews, 2005, 249, 3-30.                                                                                                                                                  | 18.8 | 132       |
| 94  | X-ray absorption spectroscopy of biological photolysis products: kilohertz photolysis and soft X-ray applications. Journal of Electron Spectroscopy and Related Phenomena, 2005, 143, 1-7.                                                                                         | 1.7  | 14        |
| 95  | In situx-ray absorption spectroscopic study of the Li[Ni1â^•3Co1â^•3Mn1â^•3]O2 cathode material. Journal of Applied Physics, 2005, 97, 113523.                                                                                                                                     | 2.5  | 92        |
| 96  | Normal Mode Analysis ofPyrococcus furiosusRubredoxin via Nuclear Resonance Vibrational<br>Spectroscopy (NRVS) and Resonance Raman Spectroscopy. Journal of the American Chemical Society,<br>2005, 127, 14596-14606.                                                               | 13.7 | 71        |
| 97  | High-Resolution X-ray Emission Spectroscopy of Molybdenum Compounds. Inorganic Chemistry, 2005, 44, 2579-2581.                                                                                                                                                                     | 4.0  | 22        |
| 98  | Normal-Mode Analysis of FeCl4-and Fe2S2Cl42-via Vibrational Mössbauer, Resonance Raman, and FT-IR<br>Spectroscopies. Inorganic Chemistry, 2005, 44, 5562-5570.                                                                                                                     | 4.0  | 75        |
| 99  | Structural Investigations of LiFePO4Electrodes by Fe X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 7046-7051.                                                                                                                                         | 2.6  | 56        |
| 100 | Chemically Distinct Ni Sites in the A-Cluster in Subunit β of the Acetyl-CoA Decarbonylase/Synthase<br>Complex fromMethanosarcinathermophila:Â Ni L-Edge Absorption and X-ray Magnetic Circular<br>Dichroism Analyses. Journal of the American Chemical Society, 2004, 126, 88-95. | 13.7 | 64        |
| 101 | The Electronic Structure of Mn in Oxides, Coordination Complexes, and the Oxygen-Evolving Complex of Photosystem II Studied by Resonant Inelastic X-ray Scattering. Journal of the American Chemical Society, 2004, 126, 9946-9959.                                                | 13.7 | 177       |
| 102 | A Monomeric Nickelâ ''Dioxygen Adduct Derived from a Nickel(I) Complex and O2. Inorganic Chemistry, 2004, 43, 3324-3326.                                                                                                                                                           | 4.0  | 95        |
| 103 | X-ray Magnetic Circular Dichroism ofPseudomonasaeruginosaNickel(II) Azurin. Journal of the<br>American Chemical Society, 2004, 126, 5859-5866.                                                                                                                                     | 13.7 | 13        |
| 104 | Inner-Shell Excitation Spectroscopy of Fused-Ring Aromatic Molecules by Electron Energy Loss and<br>X-ray Raman Techniques. Journal of Physical Chemistry A, 2003, 107, 8512-8520.                                                                                                 | 2.5  | 42        |
| 105 | Characterization of Chromodulin by X-ray Absorption and Electron Paramagnetic Resonance<br>Spectroscopies and Magnetic Susceptibility Measurements. Journal of the American Chemical Society,<br>2003, 125, 774-780.                                                               | 13.7 | 80        |
| 106 | The A-Cluster in Subunit β of the Acetyl-CoA Decarbonylase/Synthase Complex from Methanosarcina<br>thermophila: Ni and Fe K-Edge XANES and EXAFS Analyses. Journal of the American Chemical Society,<br>2003, 125, 15343-15351.                                                    | 13.7 | 44        |
| 107 | Observation of Feâ^'H/D Modes by Nuclear Resonant Vibrational Spectroscopy. Journal of the American<br>Chemical Society, 2003, 125, 4016-4017.                                                                                                                                     | 13.7 | 43        |
| 108 | A Stable Monomeric Nickel Borohydride. Inorganic Chemistry, 2003, 42, 7945-7950.                                                                                                                                                                                                   | 4.0  | 43        |

| #   | Article                                                                                                                                                                                                                                                | IF                | CITATIONS    |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 109 | Functional copper at the acetyl-CoA synthase active site. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3689-3694.                                                                                       | 7.1               | 69           |
| 110 | Requirements for x-ray magnetic circular dichroism on paramagnetic biological systems and model compounds. Review of Scientific Instruments, 2002, 73, 1649-1651.                                                                                      | 1.3               | 11           |
| 111 | Electronic Structure of Ni Complexes by X-ray Resonance Raman Spectroscopy (Resonant Inelastic) Tj ETQq1 1 C                                                                                                                                           | .784314 r<br>13.7 | gBT_/Overloc |
| 112 | Site-Selective EXAFS in Mixed-Valence Compounds Using High-Resolution Fluorescence Detection:  A<br>Study of Iron in Prussian Blue. Inorganic Chemistry, 2002, 41, 3121-3127.                                                                          | 4.0               | 95           |
| 113 | Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy. Microchemical Journal, 2002, 71, 221-230.                                                                                              | 4.5               | 141          |
| 114 | Absence of Mn-Centered Oxidation in the S2→ S3Transition: Implications for the Mechanism of<br>Photosynthetic Water Oxidation. Journal of the American Chemical Society, 2001, 123, 7804-7820.                                                         | 13.7              | 295          |
| 115 | Mn K-Edge XANES and Kl² XES Studies of Two Mnâ^'Oxo Binuclear Complexes:Â Investigation of Three Different Oxidation States Relevant to the Oxygen-Evolving Complex of Photosystem II. Journal of the American Chemical Society, 2001, 123, 7031-7039. | 13.7              | 94           |
| 116 | A Quantitative Description of the Ground-State Wave Function of CuAby X-ray Absorption<br>Spectroscopy:Â Comparison to Plastocyanin and Relevance to Electron Transfer. Journal of the<br>American Chemical Society, 2001, 123, 5757-5767.             | 13.7              | 153          |
| 117 | Dioxygen Activation by a Nickel Thioether Complex: Characterization of a Nilll2(μ-O)2Core. Journal of the American Chemical Society, 2001, 123, 9194-9195.                                                                                             | 13.7              | 84           |
| 118 | High-resolution X-ray spectroscopy of rare events: a different look at local structure and chemistry.<br>Journal of Synchrotron Radiation, 2001, 8, 199-203.                                                                                           | 2.4               | 45           |
| 119 | In situ anomalous small angle X-ray scattering and absorption on an operating rechargeable lithium ion battery cell. Electrochemistry Communications, 2001, 3, 136-141.                                                                                | 4.7               | 17           |
| 120 | Structural Investigations of Li[sub 1.5+x]Na[sub 0.5]MnO[sub 2.85]I[sub 0.12] Electrodes by Mn X-Ray<br>Absorption Near Edge Spectroscopy. Journal of the Electrochemical Society, 2000, 147, 395.                                                     | 2.9               | 24           |
| 121 | Electronic Structure of Chemically-Prepared LixMn2O4Determined by Mn X-ray Absorption and Emission Spectroscopies. Journal of Physical Chemistry B, 2000, 104, 9587-9596.                                                                              | 2.6               | 36           |
| 122 | Iron L-Edge X-ray Absorption Spectroscopy of Myoglobin Complexes and Photolysis Products. Journal of the American Chemical Society, 1997, 119, 4921-4928.                                                                                              | 13.7              | 65           |
| 123 | Spin-polarized x-ray emission of3dtransition-metal ions:  A comparison viaKαandKβdetection. Physical<br>Review B, 1997, 56, 4553-4564.                                                                                                                 | 3.2               | 89           |
| 124 | Bioinorganic applications of X-ray multiplets — The impact of Theo Tholes's work. Journal of Electron<br>Spectroscopy and Related Phenomena, 1997, 86, 175-183.                                                                                        | 1.7               | 19           |
| 125 | X-Ray magnetic circular dichroism at temperatures <1 K: demonstration with the blue copper site in plastocyanin. Inorganica Chimica Acta, 1996, 243, 229-232.                                                                                          | 2.4               | 6            |
| 126 | X-ray magnetic circular dichroism spectra and distortions at Fe2+ L2,3 edges. Journal of Electron<br>Spectroscopy and Related Phenomena, 1996, 78, 337-340.                                                                                            | 1.7               | 5            |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Spin-polarized and site-selective X-ray absorption. Demonstration with Fe porphyrins and KÎ <sup>2</sup> detection.<br>Chemical Physics Letters, 1995, 243, 469-473.                                             | 2.6  | 31        |
| 128 | Site-Selective XANES and EXAFS: A Demonstration with Manganese Mixtures and Mixed-Valence Complexes. Journal of the American Chemical Society, 1995, 117, 5895-5896.                                             | 13.7 | 46        |
| 129 | Refinement of a Model for the Nitrogenase MoFe Cluster Using Single-Crystal Mo and Fe EXAFS.<br>Angewandte Chemie International Edition in English, 1993, 32, 1592-1594.                                        | 4.4  | 14        |
| 130 | Molecular Structure of Nitrogen in Coal from XANES Spectroscopy. Applied Spectroscopy, 1993, 47, 1268-1275.                                                                                                      | 2.2  | 75        |
| 131 | Copper L-edge spectral studies: a direct experimental probe of the ground-state covalency in the blue copper site in plastocyanin. Journal of the American Chemical Society, 1993, 115, 2968-2969.               | 13.7 | 157       |
| 132 | Nitrogen chemistry of kerogens and bitumens from x-ray absorption near-edge structure spectroscopy. Energy & Fuels, 1993, 7, 1128-1134.                                                                          | 5.1  | 47        |
| 133 | Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. Journal of the American Chemical Society, 1993, 115, 252-258.                                               | 13.7 | 210       |
| 134 | Verfeinerung eines Modells für den Nitrogenase-Mo-Fe-Cluster mit Einkristall-Mo- und -Fe-EXAFS.<br>Angewandte Chemie, 1993, 105, 1661-1663.                                                                      | 2.0  | 9         |
| 135 | L-Edge spectroscopy of molybdenum compounds and enzymes. Journal of the American Chemical<br>Society, 1990, 112, 2541-2548.                                                                                      | 13.7 | 68        |
| 136 | Oriented x-ray absorption spectroscopy of membrane bound metalloproteins. Physica B: Condensed<br>Matter, 1989, 158, 81-83.                                                                                      | 2.7  | 13        |
| 137 | Oxo-molybdenum(V) complexes with sulfide and hydrogensulfide ligands: models for the<br>molybdenum(V) centers of xanthine oxidase and xanthine dehydrogenase. Inorganic Chemistry, 1989,<br>28, 8-10.            | 4.0  | 30        |
| 138 | X-ray absorption spectroscopic evidence for a unique nickel site in Clostridium thermoaceticum carbon monoxide dehydrogenase. Inorganic Chemistry, 1987, 26, 2477-2479.                                          | 4.0  | 81        |
| 139 | Reactions of molybdenum trisulfide, tungsten trisulfide, tungsten triselenide, and niobium triselenide<br>with lithium. Metal cluster rearrangement revealed by EXAFS. Inorganic Chemistry, 1986, 25, 1461-1466. | 4.0  | 32        |
| 140 | Structure diversity of F430 from Methanobacterium thermoautotrophicum. A nickel x-ray absorption spectroscopic study. Journal of the American Chemical Society, 1986, 108, 3120-3121.                            | 13.7 | 34        |
| 141 | Effect of cyanide binding on the copper sites of cytochrome c oxidase: an x-ray absorption spectroscopic study. Journal of Inorganic Biochemistry, 1985, 23, 199-205.                                            | 3.5  | 11        |
| 142 | X-ray absorption edge and EXAFS spectroscopic studies of molybdenum ions in aqueous solution.<br>Journal of the American Chemical Society, 1983, 105, 799-802.                                                   | 13.7 | 65        |
| 143 | New fluorescence detection system for xâ€ray absorption spectroscopy. Review of Scientific Instruments, 1981, 52, 395-399.                                                                                       | 1.3  | 42        |
| 144 | Observation of 17O effects on MoV EPR spectra in sulfite oxidase; xanthine dehydrogenase, and MoO(SC6H5)4â^'. Biochemical and Biophysical Research Communications, 1979, 91, 434-439.                            | 2.1  | 47        |

| #   | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | The molybdenum site of sulfite oxidase. Structural information from x-ray absorption spectroscopy.<br>Journal of the American Chemical Society, 1979, 101, 2772-2774.                                                                              | 13.7 | 102       |
| 146 | Structural results relevant to the molybdenum sites in xanthine oxidase and sulfite oxidase. Crystal structures of MoO2L, L = (SCH2CH2)2NCH2CH2X with X = SCH3, N(CH3)2. Journal of the American Chemical Society, 1979, 101, 2774-2776.           | 13.7 | 67        |
| 147 | Studies of the ferric forms of cytochrome P-450 and chloroperoxidase by extended x-ray absotption fine structure. Characterization of the iron-nitrogen and iron-sulfur distances. Journal of the American Chemical Society, 1978, 100, 7282-7290. | 13.7 | 140       |
| 148 | The molybdenum site of nitrogenase. Preliminary structural evidence from x-ray absorption spectroscopy. Journal of the American Chemical Society, 1978, 100, 3398-3407.                                                                            | 13.7 | 227       |
| 149 | The molybdenum site of nitrogenase. 2. A comparative study of molybdenum-iron proteins and the iron-molybdenum cofactor by x-ray absorption spectroscopy. Journal of the American Chemical Society, 1978, 100, 3814-3819.                          | 13.7 | 207       |
| 150 | A systematic x-ray absorption study of molybdenum complexes. The accuracy of structural<br>information from extended x-ray absorption fine structure. Journal of the American Chemical Society,<br>1978, 100, 2748-2761.                           | 13.7 | 138       |