
F Mechta-Grigoriou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4192147/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fibroblast heterogeneity in solid tumors: From single cell analysis to whole-body imaging. Seminars in Cancer Biology, 2022, 86, 262-272.	9.6	34
2	Tumor Cells and Cancer-Associated Fibroblasts: An Updated Metabolic Perspective. Cancers, 2021, 13, 399.	3.7	27
3	Dissection of intercellular communication using the transcriptome-based framework ICELLNET. Nature Communications, 2021, 12, 1089.	12.8	105
4	Stiffness increases with myofibroblast content and collagen density in mesenchymal high grade serous ovarian cancer. Scientific Reports, 2021, 11, 4219.	3.3	37
5	Role of cancerâ€associated fibroblast subpopulations in immune infiltration, as a new means of treatment in cancer. Immunological Reviews, 2021, 302, 259-272.	6.0	113
6	Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate. Cancer Research, 2021, 81, 3480-3494.	0.9	26
7	CD73-Mediated Immunosuppression Is Linked to a Specific Fibroblast Population That Paves the Way for New Therapy in Breast Cancer. Cancers, 2021, 13, 5878.	3.7	17
8	Fibroblast heterogeneity in tumor micro-environment: Role in immunosuppression and new therapies. Seminars in Immunology, 2020, 48, 101417.	5.6	132
9	A subset of activated fibroblasts is associated with distant relapse in early luminal breast cancer. Breast Cancer Research, 2020, 22, 76.	5.0	41
10	Single-Cell Analysis Reveals Fibroblast Clusters Linked to Immunotherapy Resistance in Cancer. Cancer Discovery, 2020, 10, 1330-1351.	9.4	424
11	Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nature Communications, 2020, 11, 404.	12.8	230
12	Clinical Interest of Combining Transcriptomic and Genomic Signatures in High-Grade Serous Ovarian Cancer. Frontiers in Genetics, 2020, 11, 219.	2.3	21
13	A multivariate Th17 metagene for prognostic stratification in T cell non-inflamed triple negative breast cancer. Oncolmmunology, 2019, 8, e1624130.	4.6	23
14	PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers. Cell Metabolism, 2019, 29, 156-173.e10.	16.2	174
15	The antioxidant N-acetylcysteine protects from lung emphysema but induces lung adenocarcinoma in mice. JCI Insight, 2019, 4, .	5.0	38
16	Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell, 2018, 33, 463-479.e10.	16.8	1,074
17	miR200-regulated CXCL12β promotes fibroblast heterogeneity and immunosuppression in ovarian cancers. Nature Communications, 2018, 9, 1056.	12.8	188
18	Heterogeneity in Cancer Metabolism: New Concepts in an Old Field. Antioxidants and Redox Signaling, 2017, 26, 462-485.	5.4	162

#	Article	IF	CITATIONS
19	CXCR4 inhibitors could benefit to HER2 but not to triple-negative breast cancer patients. Oncogene, 2017, 36, 1211-1222.	5.9	61
20	Chronic oxidative stress promotes H2 <scp>AX</scp> protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Molecular Medicine, 2016, 8, 527-549.	6.9	126
21	AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia, 2016, 18, 10-24.	5.3	31
22	Regulation of miR-200c/141 expression by intergenic DNA-looping and transcriptional read-through. Nature Communications, 2016, 7, 8959.	12.8	37
23	MAP3K8/TPL-2/COT is a potential predictive marker for MEK inhibitor treatment in high-grade serous ovarian carcinomas. Nature Communications, 2015, 6, 8583.	12.8	42
24	Inhibition of autophagy as a new means of improving chemotherapy efficiency in high-LC3B triple-negative breast cancers. Autophagy, 2014, 10, 2122-2142.	9.1	130
25	The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Seminars in Cancer Biology, 2014, 25, 23-32.	9.6	243
26	MSC-Regulated MicroRNAs Converge on the Transcription Factor FOXP2 and Promote Breast Cancer Metastasis. Cell Stem Cell, 2014, 15, 762-774.	11.1	155
27	Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-1β synthesis in macrophages. BMC Genomics, 2013, 14, 92.	2.8	24
28	Deletion of the Activated Protein-1 Transcription Factor JunD Induces Oxidative Stress and Accelerates Age-Related Endothelial Dysfunction. Circulation, 2013, 127, 1229-1240.	1.6	90
29	Ovarian cancer emerging subtypes: Role of oxidative stress and fibrosis in tumour development and response to treatment. International Journal of Biochemistry and Cell Biology, 2013, 45, 1092-1098.	2.8	26
30	Control of cancer-associated fibroblast function by oxidative stress: A new piece in the puzzle. Cell Cycle, 2013, 12, 2169-2169.	2.6	7
31	MIR141 (microRNA 141). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2013, , .	0.1	0
32	miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nature Medicine, 2011, 17, 1627-1635.	30.7	446
33	AP-1 Transcription Factor JunD Confers Protection from Accelerated Nephrotoxic Nephritis and Control Podocyte-Specific Vegfa Expression. American Journal of Pathology, 2011, 179, 134-140.	3.8	17
34	Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Molecular Medicine, 2010, 2, 211-230.	6.9	261
35	225 Oxidative stress promotes myofibroblast differentiation and tumour spreading. European Journal of Cancer, Supplement, 2010, 8, 124.	2.2	1
36	JunD is involved in the antiproliferative effect of Δ9-tetrahydrocannabinol on human breast cancer cells. Oncogene, 2008, 27, 5033-5044.	5.9	66

F MECHTA-GRIGORIOU

#	Article	IF	CITATIONS
37	Oxidative Stress Contributes to Aging by Enhancing Pancreatic Angiogenesis and Insulin Signaling. Cell Metabolism, 2008, 7, 113-124.	16.2	64
38	The antidepressant sertraline downregulates Akt and has activity against melanoma cells. Pigment Cell and Melanoma Research, 2008, 21, 451-456.	3.3	54
39	Redox regulation of the hypoxia-inducible factor. Biological Chemistry, 2006, 387, 1337-46.	2.5	162
40	Conditional Mineralocorticoid Receptor Expression in the Heart Leads to Life-Threatening Arrhythmias. Circulation, 2005, 111, 3025-3033.	1.6	240
41	JunD Reduces Tumor Angiogenesis by Protecting Cells from Oxidative Stress. Cell, 2004, 118, 781-794.	28.9	530
42	c-jun regulation and function in the developing hindbrain. Developmental Biology, 2003, 258, 419-431.	2.0	19
43	Impaired intervertebral disc formation in the absence ofJun. Development (Cambridge), 2003, 130, 103-109.	2.5	75
44	Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappaB. EMBO Journal, 2002, 21, 4104-4113.	7.8	323
45	The mammalian Jun proteins: redundancy and specificity. Oncogene, 2001, 20, 2378-2389.	5.9	310
46	Nab proteins mediate a negative feedback loop controlling Krox-20 activity in the developing	2.5	53

hindbrain. Development (Cambridge), 2000, 127, 119-128. 46