
Nozomi Takahashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4192008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Executioner caspases 3 and 7 are dispensable for intestinal epithelium turnover and homeostasis at steady state. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
2	Reduced protection of RIPK3-deficient mice against influenza by matrix protein 2 ectodomain targeted active and passive vaccination strategies. Cell Death and Disease, 2022, 13, 280.	6.3	1
3	MLKL deficiency in BrafV600EPtenâ^'/â^' melanoma model results in a modest delay of nevi development and reduced lymph node dissemination in male mice. Cell Death and Disease, 2022, 13, 347.	6.3	1
4	MLKL in cancer: more than a necroptosis regulator. Cell Death and Differentiation, 2021, 28, 1757-1772.	11.2	61
5	Viral dosing of influenza A infection reveals involvement of RIPK3 and FADD, but not MLKL. Cell Death and Disease, 2021, 12, 471.	6.3	15
6	The ubiquitin-editing enzyme A20 controls NK cell homeostasis through regulation of mTOR activity and TNF. Journal of Experimental Medicine, 2019, 216, 2010-2023.	8.5	15
7	Survival of Single Positive Thymocytes Depends upon Developmental Control of RIPK1 Kinase Signaling by the IKK Complex Independent of NF-κB. Immunity, 2019, 50, 348-361.e4.	14.3	27
8	Tozasertib Analogues as Inhibitors of Necroptotic Cell Death. Journal of Medicinal Chemistry, 2018, 61, 1895-1920.	6.4	32
9	RIPK1-dependent cell death: a novel target of the Aurora kinase inhibitor Tozasertib (VX-680). Cell Death and Disease, 2018, 9, 211.	6.3	36
10	Apoptosis of intestinal epithelial cells restricts Clostridium difficile infection in a model of pseudomembranous colitis. Nature Communications, 2018, 9, 4846.	12.8	53
11	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	14.3	172
12	Glucocorticoid receptor dimers control intestinal STAT1 and TNF-induced inflammation in mice. Journal of Clinical Investigation, 2018, 128, 3265-3279.	8.2	52
13	Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death and Disease, 2017, 8, e2904-e2904.	6.3	69
14	The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Reports, 2016, 15, 1481-1492.	6.4	46
15	NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice. Atherosclerosis, 2016, 252, 166-174.	0.8	17
16	Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death and Disease, 2014, 5, e1004-e1004.	6.3	164
17	Necroptosis, in vivo detection in experimental disease models. Seminars in Cell and Developmental Biology, 2014, 35, 2-13.	5.0	135
18	RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature, 2014, 513, 95-99.	27.8	275

Nozomi Таканазні

#	Article	IF	CITATIONS
19	Simultaneous Targeting of IL-1 and IL-18 Is Required for Protection against Inflammatory and Septic Shock. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 282-291.	5.6	145
20	Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods, 2013, 61, 117-129.	3.8	193
21	Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death and Differentiation, 2013, 20, 185-187.	11.2	154
22	Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15312-15317.	7.1	251
23	Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death and Disease, 2012, 3, e437-e437.	6.3	379
24	Degradomics Reveals That Cleavage Specificity Profiles of Caspase-2 and Effector Caspases Are Alike. Journal of Biological Chemistry, 2012, 287, 33983-33995.	3.4	37
25	TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death and Differentiation, 2012, 19, 2003-2014.	11.2	300
26	Dual Face Apoptotic Machinery: From Initiator of Apoptosis to Guardian of Necroptosis. Immunity, 2011, 35, 493-495.	14.3	13
27	RIP Kinase-Dependent Necrosis Drives Lethal Systemic Inflammatory Response Syndrome. Immunity, 2011, 35, 908-918.	14.3	490
28	TLR-2 and TLR-9 are sensors of apoptosis in a mouse model of doxorubicin-induced acute inflammation. Cell Death and Differentiation, 2011, 18, 1316-1325.	11.2	102
29	The molecular signature of oxidative metabolism and the mode of macrophage activation determine the shift from acute to chronic disease in experimental arthritis: Critical role of interleukinâ€12p40. Arthritis and Rheumatism, 2008, 58, 3471-3484.	6.7	16
30	IL-17 produced by Paneth cells drives TNF-induced shock. Journal of Experimental Medicine, 2008, 205, 1755-1761.	8.5	167
31	Mechanisms of sensitization by infections towards tumour necrosis factor induced sirs. Intensive Care Medicine, 1996, 22, S28-S28.	8.2	0
32	Antiâ€ŧumor activity of tumor necrosis factor in combination with interferonâ€î³ is not affected by prior tolerization. International Journal of Cancer, 1995, 63, 846-854.	5.1	11
33	Response of interleukin-6-deficient mice to tumor necrosis factor-induced metabolic changes and lethality. European Journal of Immunology, 1994, 24, 2237-2242.	2.9	61
34	Tumor necrosis factor, its receptors and the connection with interleukin 1 and interleukin 6. Immunobiology, 1993, 187, 317-329.	1.9	104