Andreas W Bett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4191311/publications.pdf

Version: 2024-02-01

201674 133252 3,597 85 27 59 citations h-index g-index papers 91 91 91 3102 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrated series/parallel connection for photovoltaic laser power converters with optimized current matching. Progress in Photovoltaics: Research and Applications, 2021, 29, 172-180.	8.1	15
2	68.9% Efficient GaAsâ€Based Photonic Power Conversion Enabled by Photon Recycling and Optical Resonance. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100113.	2.4	56
3	Preface to Special Collection: "Renewable Energy Technologies and Systems― Applied Physics Reviews, 2021, 8, 020401.	11.3	O
4	Pushing the Boundaries of Photovoltaic Light to Electricity Conversion: A GaAs Based Photonic Power Converter with 68.9% Efficiency., 2021,,.		5
5	Wafer-bonded GalnP/GaAs/GalnAs//GaSb four-junction solar cells with 43.8% efficiency under concentration., 2020,,.		3
6	FLATCON® CPV module technology: A new design based on the evaluation of 10 years of outdoor measurement data. AIP Conference Proceedings, 2019, , .	0.4	4
7	Comprehensive electrical loss analysis of monolithic interconnected multiâ€segment laser power converters. Progress in Photovoltaics: Research and Applications, 2019, 27, 199-209.	8.1	24
8	Development of back side technology for light trapping and photon recycling in GaAs solar cells. Progress in Photovoltaics: Research and Applications, 2019, 27, 163-170.	8.1	25
9	Systematic design evaluation on the example of a concentrator photovoltaic module with mirror optics and passive heat dissipation. Progress in Photovoltaics: Research and Applications, 2018, 26, 460-472.	8.1	4
10	On the Influence of the Photo-Induced Leakage Current in Monolithically Interconnected Modules. IEEE Journal of Photovoltaics, 2018, 8, 541-546.	2.5	8
11	Component cell–based restriction of spectral conditions and the impact on CPV module power rating. Progress in Photovoltaics: Research and Applications, 2018, 26, 351-358.	8.1	9
12	III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nature Energy, 2018, 3, 326-333.	39 . 5	244
13	High-Speed Quantum Efficiency Determination of Multijunction Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 333-341.	2.5	O
14	Analysis of the performance of an on-axis mirror module design compared to a FLATCON® module. AIP Conference Proceedings, 2018, , .	0.4	0
15	Operation & maintenance – The key for reliable performance in a CPV power plant. AIP Conference Proceedings, 2018, , .	0.4	3
16	Direct Growth of III–V/Silicon Triple-Junction Solar Cells With 19.7% Efficiency. IEEE Journal of Photovoltaics, 2018, 8, 1590-1595.	2.5	48
17	Subcell Characterization in Multijunction Solar Cells Using Pulsed Light. IEEE Journal of Photovoltaics, 2017, 7, 709-714.	2.5	3
18	On the alignment tolerance of photovoltaic laser power converters. Optik, 2017, 131, 287-291.	2.9	11

#	Article	IF	CITATIONS
19	Monolithic Two-Terminal III–V//Si Triple-Junction Solar Cells With 30.2% Efficiency Under 1-Sun AM1.5g. IEEE Journal of Photovoltaics, 2017, 7, 367-373.	2.5	98
20	High-Efficiency n-Type HP mc Silicon Solar Cells. IEEE Journal of Photovoltaics, 2017, 7, 1171-1175.	2.5	135
21	On the temperature dependence of dualâ€junction laser power converters. Progress in Photovoltaics: Research and Applications, 2017, 25, 67-75.	8.1	30
22	Performance and failure analysis of concentrator solar cells after intensive stressing with thermal, electrical, and combined load. AIP Conference Proceedings, 2017, , .	0.4	4
23	Notice of Removal: Subcell characterization in multijunction solar cells using pulsed light. , 2017, , .		0
24	Wafer Bonded III–V on Silicon Multi -Junction Cell with Efficiency beyond 31%. , 2017, , .		3
25	Determination of subcell l–V characteristics of multijunction solar cells using optical coupling. Progress in Photovoltaics: Research and Applications, 2016, 24, 760-773.	8.1	8
26	Photovoltaic laser power converters for wireless optical power supply of sensor systems., 2016,,.		4
27	Minority carrier lifetime limitations in Si wafer solar cells with gallium phosphide window layers. , 2016, , .		1
28	43% Sunlight to Electricity Conversion Efficiency Using CPV. IEEE Journal of Photovoltaics, 2016, 6, 1020-1024.	2.5	71
29	A sensitivity analysis of the stepwise measurement procedure for the characterization of large area PV modules. Solar Energy, 2016, 127, 96-108.	6.1	0
30	Four-Junction Wafer-Bonded Concentrator Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 343-349.	2.5	280
31	CPV module with Fresnel lens primary optics and homogenizing secondary optics. AIP Conference Proceedings, 2015, , .	0.4	7
32	Analysis of a four lamp flash system for calibrating multi-junction solar cells under concentrated light. AIP Conference Proceedings, 2015, , .	0.4	8
33	Quantum efficiency measurement of concentrator photovoltaic modules., 2015,,.		0
34	Four-junction wafer bonded concentrator solar cells. , 2015, , .		9
35	Investigations on Al $_{m x}$ Ga $_{m {1-x}}$ As Solar Cells Grown by MOVPE. IEEE Journal of Photovoltaics, 2015, 5, 446-453.	2.5	39
36	Impact of photon recycling and luminescence coupling on III–V single and dual junction photovoltaic devices. Journal of Photonics for Energy, 2015, 5, 053087.	1.3	21

#	Article	IF	CITATIONS
37	Impact of Photon Recycling on GaAs Solar Cell Designs. IEEE Journal of Photovoltaics, 2015, 5, 1636-1645.	2.5	70
38	Stepwise measurement procedure for the characterization of largeâ€area photovoltaic modules. Progress in Photovoltaics: Research and Applications, 2015, 23, 1867-1876.	8.1	4
39	FLATCON® CPV module with 36.7% efficiency equipped with fourâ€junction solar cells. Progress in Photovoltaics: Research and Applications, 2015, 23, 1323-1329.	8.1	49
40	YieldOpt, a model to predict the power output and energy yield for concentrating photovoltaic modules. Progress in Photovoltaics: Research and Applications, 2015, 23, 385-397.	8.1	37
41	Investigation of different Fresnel lens designs and methods to determine the optical efficiency. AIP Conference Proceedings, 2014, , .	0.4	9
42	Development and investigation of a CPV module with Cassegrain mirror optics. AIP Conference Proceedings, 2014, , .	0.4	12
43	Challenges for thermal management and production technologies in concentrating photovoltaic (CPV) modules. , 2014, , .		0
44	Temperature-dependent electroluminescence and voltages of multi-junction solar cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 757-763.	8.1	17
45	III-V Multi-junction solar cells and concentrating photovoltaic (CPV) systems. Advanced Optical Technologies, 2014, 3, 469-478.	1.7	36
46	Modeling of concentrating photovoltaic and thermal systems. Progress in Photovoltaics: Research and Applications, 2014, 22, 427-439.	8.1	33
47	Wafer bonded fourâ€junction GalnP/GaAs//GalnAsP/GalnAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 2014, 22, 277-282.	8.1	511
48	Comparison of Direct Growth and Wafer Bonding for the Fabrication of GaInP/GaAs Dual-Junction Solar Cells on Silicon. IEEE Journal of Photovoltaics, 2014, 4, 620-625.	2.5	98
49	An investigation of solar cell interconnection schemes within CPV modules using a validated temperatureâ€dependent SPICE network model. Progress in Photovoltaics: Research and Applications, 2014, 22, 505-514.	8.1	17
50	Analysis of temperature coefficients for III $\hat{a} \in \mathbb{N}$ multi $\hat{a} \in \mathbb{N}$ multia concentrator cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 515-524.	8.1	113
51	Development of high efficiency wafer bonded 4-junction solar cells for concentrator photovoltaic applications. , 2014, , .		17
52	SPICE Network Simulation to Calculate Thermal Runaway in III–V Solar Cells in CPV Modules. IEEE Journal of Photovoltaics, 2014, 4, 749-754.	2.5	8
53	Influence of temperature and irradiance on triple-junction solar subcells. Solar Energy Materials and Solar Cells, 2013, 116, 144-152.	6.2	84
54	Bandgap determination based on electrical quantum efficiency. Applied Physics Letters, 2013, 103, .	3.3	35

#	Article	IF	CITATIONS
55	Electroluminescence and Photoluminescence Characterization of Multijunction Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 353-358.	2.5	32
56	Luminescence based series resistance mapping of III-V multijunction solar cells. Journal of Applied Physics, 2013, 114, 194510.	2.5	18
57	Series resistance mapping of III-V multijunction solar cells based on luminescence imaging. , 2013, , .		1
58	Investigations on 3-dimensional temperature distribution in a FLATCON-type CPV module. AIP Conference Proceedings, 2013, , .	0.4	8
59	Modeling the thermal runaway effect in CPV modules. AIP Conference Proceedings, 2013, , .	0.4	6
60	AlxGa1â^'xAs minority carrier lifetime enhancement at low temperatures. Applied Physics Letters, 2013, 103, 132102.	3.3	4
61	Improved grating monochromator set-up for EQE measurements of multi-junction solar cells. , 2013, , .		23
62	Electroluminescence and photoluminescence characterization of multijunction solar cells., 2013,,.		O
63	Realistic power output modeling of CPV modules. AIP Conference Proceedings, 2012, , .	0.4	11
64	Spectrally resolved DNI measurements: Results of a field comparison of spectroradiometers, component cells and the SOLIS satellite model. AIP Conference Proceedings, 2012, , .	0.4	2
65	Electroluminescence and photoluminescence characterization of multijunction solar cells. , 2012, , .		0
66	A validated SPICE network simulation study on improving tunnel diodes by introducing lateral conduction layers. Progress in Photovoltaics: Research and Applications, 2012, 20, 274-283.	8.1	39
67	Numerical simulations of absorption properties of InP nanowires for solar cell applications. Progress in Photovoltaics: Research and Applications, 2012, 20, 945-953.	8.1	26
68	Subcell I-V characteristic analysis of GalnP/GalnAs/Ge solar cells using electroluminescence measurements. Applied Physics Letters, 2011, 98, .	3.3	107
69	Increasing the Energy Yield of CPV Modules through Optimized Solar Cell Interconnection. AIP Conference Proceedings, $2011,\ldots$	0.4	3
70	Fourâ€junction spectral beamâ€splitting photovoltaic receiver with high optical efficiency. Progress in Photovoltaics: Research and Applications, 2011, 19, 61-72.	8.1	98
71	Validated front contact grid simulation for GaAs solar cells under concentrated sunlight. Progress in Photovoltaics: Research and Applications, 2011, 19, 73-83.	8.1	55
72	Investigation of Radiation Hardness of Germanium Photovoltaic Cells. IEEE Transactions on Electron Devices, 2010, 57, 2190-2194.	3.0	11

#	Article	IF	CITATIONS
73	Processing Techniques for Monolithic Interconnection of Solar Cells at Wafer Level. IEEE Transactions on Electron Devices, 2010, 57, 3355-3360.	3.0	15
74	Promises of advanced multi-junction solar cells for the use in CPV systems. , 2010, , .		11
75	Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Applied Physics Letters, 2009, 94, .	3.3	630
76	An optically powered fibre network for heterogeneous subscribers. , 2009, , .		2
77	III–V solar cells under monochromatic illumination. Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , .	0.0	35
78	Development of metamorphic triple-junction solar cells for low temperature, low intensity operation in space., 2008,,.		4
79	Numerical simulation of tunnel diodes and multi-junction solar cells. , 2008, , .		7
80	Outdoor evaluation of flatcon® modules and systems. , 2008, , .		7
81	Effects of optical coupling in III-V multilayer systems. Applied Physics Letters, 2007, 90, 192109.	3.3	66
82	IV-Characterization of Devices Consisting of Solar Cells and Tunnel Diodes. , 2006, , .		6
83	GaSb-, InGaAsSb-, InGaSb-, InAsSbP- and Ge-TPV cells for low-temperature TPV applications. AIP Conference Proceedings, 2003, , .	0.4	14
84	Diffusion of Zn in TPV materials: GaSb, InGaSb, InGaAsSb and InAsSbP. AIP Conference Proceedings, 2003,	0.4	9
85	Monolithic 2-terminal perovskite silicon tandem solar cells. , 0, , .		O