
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4191063/publications.pdf Version: 2024-02-01

AMY CLANES

#	Article	IF	CITATIONS
1	Evidence for Schizophrenia-Specific Pathophysiology of Nicotine Dependence. Frontiers in Psychiatry, 2022, 13, 804055.	2.6	9
2	A methodological checklist for fMRI drug cue reactivity studies: development and expert consensus. Nature Protocols, 2022, 17, 567-595.	12.0	26
3	Safety and target engagement of an oral small-molecule sequestrant in adolescents with autism spectrum disorder: an open-label phase 1b/2a trial. Nature Medicine, 2022, 28, 528-534.	30.7	45
4	Alcohol- and non-alcohol-related interference: An fMRI study of treatment-seeking adults with alcohol use disorder. Drug and Alcohol Dependence, 2022, 235, 109462.	3.2	3
5	P577. Connectomic Analysis Identifies a Network Target of Nicotine Dependence in Schizophrenia. Biological Psychiatry, 2022, 91, S322.	1.3	0
6	Sex differences in functional network dynamics observed using coactivation pattern analysis. Cognitive Neuroscience, 2021, 12, 120-130.	1.4	10
7	Smoking-induced craving relief relates to increased DLPFC-striatal coupling in nicotine-dependent women. Drug and Alcohol Dependence, 2021, 221, 108593.	3.2	4
8	Efficacy of the Unified Protocol for the treatment of comorbid alcohol use and anxiety disorders: Study protocol and methods. Contemporary Clinical Trials, 2021, 108, 106512.	1.8	3
9	Nicotine acutely alters temporal properties of resting brain states. Drug and Alcohol Dependence, 2021, 226, 108846.	3.2	3
10	Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology, 2021, 198, 108765.	4.1	51
11	Neural cue reactivity during acute abstinence predicts shortâ€ŧerm smoking relapse. Addiction Biology, 2020, 25, e12733.	2.6	19
12	Dynamic functioning of transient restingâ€ s tate coactivation networks in the Human Connectome Project. Human Brain Mapping, 2020, 41, 373-387.	3.6	24
13	Interactive effects of age and recent substance use on striatal shape morphology at substance use disorder treatment entry. Drug and Alcohol Dependence, 2020, 206, 107728.	3.2	2
14	Craving and Cue Reactivity in Nicotine-Dependent Tobacco Smokers Is Associated With Different Insula Networks. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 76-83.	1.5	20
15	Temporal Dynamics of Large-Scale Networks Predict Neural Cue Reactivity and Cue-Induced Craving. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 1011-1018.	1.5	5
16	Caudate reactivity to smoking cues is associated with increased responding to monetary reward in nicotine-dependent individuals. Drug and Alcohol Dependence, 2020, 209, 107951.	3.2	6
17	Is it worth the effort?. Science, 2020, 367, 1300-1301.	12.6	1
18	Clinical Correlates of Smoking Status in Men and Women with Opioid Use Disorder. Substance Use and Misuse, 2020, 55, 1054-1058.	1.4	4

#	Article	IF	CITATIONS
19	The acute effects of nicotine on corticostriatal responses to distinct phases of reward processing. Neuropsychopharmacology, 2020, 45, 1207-1214.	5.4	11
20	A Preliminary Examination of Nicotine-Free Electronic Cigarette Use During Cessation From Combustible Cigarettes. Frontiers in Psychiatry, 2019, 10, 559.	2.6	0
21	Quitting starts in the brain: a randomized controlled trial of app-based mindfulness shows decreases in neural responses to smoking cues that predict reductions in smoking. Neuropsychopharmacology, 2019, 44, 1631-1638.	5.4	40
22	Sex differences in tobacco smokers: Executive control network and frontostriatal connectivity. Drug and Alcohol Dependence, 2019, 195, 59-65.	3.2	20
23	F116. A Preliminary Evaluation of Nicotine's Impact on Functional Connectivity in Major Depressive Disorder. Biological Psychiatry, 2018, 83, S282.	1.3	0
24	Neural Responses to Smoking Cues in Schizophrenia. Schizophrenia Bulletin, 2018, 44, 525-534.	4.3	9
25	Nicotine Increases Activation to Anticipatory Valence Cues in Anterior Insula and Striatum. Nicotine and Tobacco Research, 2018, 20, 851-858.	2.6	20
26	Salience network coupling is linked to both tobacco smoking and symptoms of attention deficit hyperactivity disorder (ADHD). Drug and Alcohol Dependence, 2018, 182, 93-97.	3.2	14
27	Nicotine-induced activation of caudate and anterior cingulate cortex in response to errors in schizophrenia. Psychopharmacology, 2018, 235, 789-802.	3.1	10
28	Nicotine normalizes cortico-striatal connectivity in non-smoking individuals with major depressive disorder. Neuropsychopharmacology, 2018, 43, 2445-2451.	5.4	26
29	Sex differences in default mode and dorsal attention network engagement. PLoS ONE, 2018, 13, e0199049.	2.5	34
30	Reduced interhemispheric executive control network coupling in men during early cocaine abstinence: A pilot study. Drug and Alcohol Dependence, 2017, 181, 1-4.	3.2	12
31	Multi-site exploration of sex differences in brain reactivity to smoking cues: Consensus across sites and methodologies. Drug and Alcohol Dependence, 2017, 178, 469-476.	3.2	26
32	Revisiting the role of the insula and smoking cue-reactivity in relapse: A replication and extension of neuroimaging findings. Drug and Alcohol Dependence, 2017, 179, 8-12.	3.2	38
33	Association Between Reward Reactivity and Drug Use Severity is Substance Dependent: Preliminary Evidence From the Human Connectome Project. Nicotine and Tobacco Research, 2017, 19, 710-715.	2.6	7
34	Salience and Default Mode Network Coupling Predicts Cognition in Aging and Parkinson's Disease. Journal of the International Neuropsychological Society, 2016, 22, 205-215.	1.8	64
35	Dorsal anterior cingulate glutamate is associated with engagement of the default mode network during exposure to smoking cues. Drug and Alcohol Dependence, 2016, 167, 75-81.	3.2	21
36	Default Mode Network Functional Reorganization During Early Abstinence in Polysubstance-Using Emerging Adults Treated for Opioid Dependence. Journal of Neuropsychiatry and Clinical Neurosciences, 2016, 28, 325-327.	1.8	3

#	Article	IF	CITATIONS
37	Insula reactivity to negative stimuli is associated with daily cigarette use: A preliminary investigation using the Human Connectome Database. Drug and Alcohol Dependence, 2016, 159, 277-280.	3.2	7
38	Cigarette craving is associated with blunted reward processing in nicotine-dependent smokers. Drug and Alcohol Dependence, 2015, 155, 202-207.	3.2	63
39	Altered intrinsic functional coupling between core neurocognitive networks in Parkinson's disease. NeuroImage: Clinical, 2015, 7, 449-455.	2.7	90
40	Insula–Dorsal Anterior Cingulate Cortex Coupling is Associated with Enhanced Brain Reactivity to Smoking Cues. Neuropsychopharmacology, 2015, 40, 1561-1568.	5.4	76
41	Striatal Morphology is Associated with Tobacco Cigarette Craving. Neuropsychopharmacology, 2015, 40, 406-411.	5.4	32
42	Can apparent resting state connectivity arise from systemic fluctuations?. Frontiers in Human Neuroscience, 2015, 9, 285.	2.0	61
43	Brain and cognition abnormalities in long-term anabolic-androgenic steroid users. Drug and Alcohol Dependence, 2015, 152, 47-56.	3.2	70
44	Reward Responsiveness Varies by Smoking Status in Women with a History of Major Depressive Disorder. Neuropsychopharmacology, 2015, 40, 1940-1946.	5.4	24
45	Memory retrieval of smokingâ€related images induce greater insula activation as revealed by an <scp>fMRI</scp> â€based delayed matching to sample task. Addiction Biology, 2015, 20, 349-356.	2.6	26
46	An Increase in Tobacco Craving Is Associated with Enhanced Medial Prefrontal Cortex Network Coupling. PLoS ONE, 2014, 9, e88228.	2.5	38
47	Brain structural abnormalities in Doberman pinschers with canine compulsive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2013, 45, 1-6.	4.8	31
48	GABA Levels in The Dorsal Anterior Cingulate Cortex Associated with Difficulty Ignoring Smoking-Related Cues in Tobacco-Dependent Volunteers. Neuropsychopharmacology, 2013, 38, 1113-1120.	5.4	22
49	A method for conducting functional MRI studies in alert nonhuman primates: Initial results with opioid agonists in male cynomolgus monkeys Experimental and Clinical Psychopharmacology, 2013, 21, 323-331.	1.8	8
50	Association between CHRNA5 genetic variation at rs16969968 and brain reactivity to smoking images in nicotine dependent women. Drug and Alcohol Dependence, 2012, 120, 7-13.	3.2	45
51	Prefrontal and limbic resting state brain network functional connectivity differs between nicotine-dependent smokers and non-smoking controls. Drug and Alcohol Dependence, 2012, 125, 252-259.	3.2	110
52	Positive Reinforcement Training in Squirrel Monkeys Using Clicker Training. American Journal of Primatology, 2012, 74, 712-720.	1.7	24
53	Anterior cingulate proton spectroscopy glutamate levels differ as a function of smoking cessation outcome. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 1709-1713.	4.8	23
54	A Double-Blind, Placebo-Controlled Trial of the NMDA Glycine Site Antagonist, GW468816, for Prevention of Relapse to Smoking in Females. Journal of Clinical Psychopharmacology, 2011, 31, 597-602.	1.4	11

#	Article	IF	CITATIONS
55	Medial temporal lobe functioning and structure in the spontaneously hypertensive rat: Comparison with Wistar–Kyoto normotensive and Wistar–Kyoto hypertensive strains. Hippocampus, 2010, 20, 787-797.	1.9	21
56	Neural Substrates of Attentional Bias for Smoking-Related Cues: An fMRI Study. Neuropsychopharmacology, 2010, 35, 2339-2345.	5.4	122
57	Brain Reactivity to Smoking Cues Prior to Smoking Cessation Predicts Ability to Maintain Tobacco Abstinence. Biological Psychiatry, 2010, 67, 722-729.	1.3	371
58	The involvement of type IV phosphodiesterases in cocaine-induced sensitization and subsequent pERK expression in the mouse nucleus accumbens. Psychopharmacology, 2009, 206, 177-185.	3.1	26
59	Role of the orbitofrontal cortex and dorsal striatum in regulating the dose-related effects of self-administered cocaine. Behavioural Brain Research, 2009, 201, 128-136.	2.2	19
60	Brain fMRI reactivity to smoking-related images before and during extended smoking abstinence Experimental and Clinical Psychopharmacology, 2009, 17, 365-373.	1.8	57
61	Sex difference in Fos induced by male urine in medial amygdala-projecting accessory olfactory bulb mitral cells of mice. Neuroscience Letters, 2006, 398, 59-62.	2.1	21
62	Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in rat brain. Brain Research, 2003, 975, 167-178.	2.2	28