James T Carlton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4190737/publications.pdf

Version: 2024-02-01

98 13,136 41 91
papers citations h-index g-index

102 102 10493
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A proposed unified framework for biological invasions. Trends in Ecology and Evolution, 2011, 26, 333-339.	8.7	1,762
2	Accelerating Invasion Rate in a Highly Invaded Estuary. Science, 1998, 279, 555-558.	12.6	967
3	Scientists' warning on invasive alien species. Biological Reviews, 2020, 95, 1511-1534.	10.4	928
4	Invasion of Coastal Marine Communities in North America: Apparent Patterns, Processes, and Biases. Annual Review of Ecology, Evolution, and Systematics, 2000, 31, 481-531.	6.7	857
5	Global Invasions of Marine and Estuarine Habitats by Non-Indigenous Species: Mechanisms, Extent, and Consequences. American Zoologist, 1997, 37, 621-632.	0.7	831
6	Exotic Species in the Great Lakes: A History of Biotic Crises and Anthropogenic Introductions. Journal of Great Lakes Research, 1993, 19, 1-54.	1.9	740
7	Biological Invasions and Cryptogenic Species. Ecology, 1996, 77, 1653-1655.	3.2	640
8	Pattern, process, and prediction in marine invasion ecology. Biological Conservation, 1996, 78, 97-106.	4.1	484
9	Marine range shifts and species introductions: comparative spread rates and community impacts. Global Ecology and Biogeography, 2010, 19, 303-316.	5.8	443
10	Man's Role in Changing the Face of the Ocean: Biological Invasions and Implications for Conservation of Near-Shore Environments. Conservation Biology, 1989, 3, 265-273.	4.7	356
11	Invasion Science: A Horizon Scan of Emerging Challenges and Opportunities. Trends in Ecology and Evolution, 2017, 32, 464-474.	8.7	312
12	Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs Carcinus maenas and C. aestuarii. Journal of Biogeography, 2003, 30, 1809-1820.	3.0	248
13	Post-Establishment Spread in Large-Scale Invasions: Dispersal Mechanisms of the Zebra Mussel Dreissena Polymorpha. Ecology, 1996, 77, 1686-1690.	3.2	230
14	Tsunami-driven rafting: Transoceanic species dispersal and implications for marine biogeography. Science, 2017, 357, 1402-1406.	12.6	220
15	Genetic Perspectives on Marine Biological Invasions. Annual Review of Marine Science, 2010, 2, 367-393.	11.6	207
16	A Test of Criteria for Introduced Species: the Global Invasion by the Isopod Synidotea Laevidorsalis (Miers, 1881). Journal of Crustacean Biology, 1991, 11, 386-400.	0.8	192
17	Restructuring the <scp>S</scp> ea: profound shifts in the world's most invaded marine ecosystem. Diversity and Distributions, 2013, 19, 69-77.	4.1	190
18	Exotic Species and the Integrity of the Great Lakes. BioScience, 1994, 44, 666-676.	4.9	188

#	Article	IF	CITATIONS
19	Toward the Integrated Marine Debris Observing System. Frontiers in Marine Science, 2019, 6, .	2.5	178
20	â€~Double trouble': the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biological Invasions, 2015, 17, 973-976.	2.4	170
21	Deep Invasion Ecology and the Assembly of Communities in Historical Time. Ecological Studies, 2009, , 13-56.	1.2	157
22	Classification of Non-Indigenous Species Based on Their Impacts: Considerations for Application in Marine Management. PLoS Biology, 2015, 13, e1002130.	5.6	151
23	Trends in marine biological invasions at local and regional scales: the Northeast Pacific Ocean as a model system. Biological Invasions, 2005, 7, 369-392.	2.4	150
24	Trends in the detection of aquatic nonâ€indigenous species across global marine, estuarine and freshwater ecosystems: A 50â€year perspective. Diversity and Distributions, 2020, 26, 1780-1797.	4.1	118
25	Marine Bioinvasions: The Alteration of Marine Ecosystems by Nonindigenous Species. Oceanography, 1996, 9, 36-43.	1.0	118
26	Historical baselines in marine bioinvasions: Implications for policy and management. PLoS ONE, 2018, 13, e0202383.	2.5	103
27	The Zebra Mussel Dreissena polymorpha Found in North America in 1986 and 1987. Journal of Great Lakes Research, 2008, 34, 770-773.	1.9	101
28	Invasion Pressure to a Ballast-flooded Estuary and an Assessment of Inoculant Survival. Biological Invasions, 1999, 1, 67-87.	2.4	98
29	Four priority areas to advance invasion science in the face of rapid environmental change. Environmental Reviews, 2021, 29, 119-141.	4.5	98
30	Exotic Species in the Hudson River Basin: A History of Invasions and Introductions. Estuaries and Coasts, 1996, 19, 814.	1.7	92
31	Assessing the Risk of Introducing Exotic Species via the Live Marine Species Trade. Conservation Biology, 2005, 19, 213-223.	4.7	85
32	Community assembly and historical biogeography in the North Atlantic Ocean: the potential role of human-mediated dispersal vectors. Hydrobiologia, 2003, 503, 1-8.	2.0	81
33	Neoextinctions of Marine Invertebrates. American Zoologist, 1993, 33, 499-509.	0.7	74
34	A Plasticene Lexicon. Marine Pollution Bulletin, 2020, 150, 110714.	5.0	69
35	Marine invasions on a subtropical island: fouling studies and new records in a recent marina on Madeira Island (Eastern Atlantic Ocean). Aquatic Invasions, 2013, 8, 261-270.	1.6	63
36	Invasion history and vector dynamics in coastal marine ecosystems: A North American perspective. Aquatic Ecosystem Health and Management, 2015, 18, 299-311.	0.6	59

#	Article	IF	Citations
37	A Framework for Understanding Marine Cosmopolitanism in the Anthropocene. Frontiers in Marine Science, 2018, 5, 293.	2.5	57
38	â€~Caribbean Creep' Chills Out: Climate Change and Marine Invasive Species. PLoS ONE, 2011, 6, e29657.	2.5	56
39	Reimagining South American coasts: unveiling the hidden invasion history of an iconic ecological engineer. Diversity and Distributions, 2015, 21, 1267-1283.	4.1	48
40	Refining and expanding global climate change scenarios in the sea: Poleward creep complexities, range termini, and setbacks and surges. Diversity and Distributions, 2017, 23, 463-473.	4.1	48
41	First mussel settlement observed in Antarctica reveals the potential for future invasions. Scientific Reports, 2020, 10, 5552.	3.3	47
42	Barnacle Invasions: Introduced, Cryptogenic, and Range Expanding Cirripedia of North and South America., 2011, , 159-213.		46
43	Predicted Discoveries of the Introduced Isopod Synidotea laevidorsalis (Miers, 1881). Journal of Crustacean Biology, 1994, 14, 700.	0.8	45
44	Hawaiian Marine Bioinvasions: A Preliminary Assessment. Pacific Science, 2002, 56, 211-212.	0.6	40
45	Bioinvasion Ecology: Assessing Invasion Impact and Scale. , 2002, , 7-19.		39
46	The Asian red seaweed Grateloupia turuturu (Rhodophyta) invades the Gulf of Maine. Biological Invasions, 2008, 10, 985-988.	2.4	39
47	Supporting <i>Spartina</i> : Interdisciplinary perspective shows <i>Spartina</i> as a distinct solid genus. Ecology, 2019, 100, e02863.	3.2	39
48	Past and future of the marine bioinvasions along the Southwestern Atlantic. Aquatic Invasions, 2020, 15, 11-29.	1.6	39
49	A novel marine bioinvasion vector: Ichthyochory, live passage through fish. Limnology and Oceanography Letters, 2017, 2, 81-90.	3.9	37
50	Emergence of a neopelagic community through the establishment of coastal species on the high seas. Nature Communications, 2021, 12, 6885.	12.8	32
51	Whaling Effects on Deep-Sea Biodiversity. Conservation Biology, 1995, 9, 462-464.	4.7	31
52	Autotomy in the Asian Shore Crab (Hemigrapsus Sanguineus) in a Non-Native Area of Its Range. Journal of Crustacean Biology, 2005, 25, 655-660.	0.8	27
53	Assessing marine bioinvasions in the Gal \tilde{A}_i pagos Islands: Implications for conservation biology and marine protected areas. Aquatic Invasions, 2019, 14, 1-20.	1.6	27
54	Taphonomic losses become taphonomic gains: an experimental approach using the rocky shore gastropod, Tegula funebralis. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 114, 197-217.	2.3	26

#	Article	IF	CITATIONS
55	The growing peril of biological invasions. Frontiers in Ecology and the Environment, 2019, 17, 191-191.	4.0	26
56	DESCRIPTION OF A NEW SPECIES, CRANGON HANDI, AND NEW GENUS, LISSOCRANGON, OF CRANGONID SHRIMPS (CRUSTACEA: CARIDEA) FROM THE CALIFORNIA COAST, WITH NOTES ON ADAPTATION IN BODY SHAPE AND COLORATION. Biological Bulletin, 1977, 153, 540-559.	1.8	25
57	Opening Pandora's bait box: a potent vector for biological invasions of live marine species. Diversity and Distributions, 2016, 22, 30-42.	4.1	25
58	The invasion risk of species associated with Japanese Tsunami Marine Debris in Pacific North America and Hawaii. Marine Pollution Bulletin, 2018, 132, 82-89.	5.0	25
59	Apostrophe to the Ocean. Conservation Biology, 1998, 12, 1165-1167.	4.7	23
60	A Journal of Biological Invasions. Biological Invasions, 1999, 1, 1-1.	2.4	23
61	Ecological and biological studies of ocean rafting: Japanese tsunami marine debris in North America and the Hawaiian Islands. Aquatic Invasions, 2018, 13, 1-9.	1.6	23
62	Ocean rafting and marine debris: A broader vector menu requires a greater appetite for invasion biology research support. Aquatic Invasions, 2018, 13, 11-15.	1.6	23
63	Diversity and patterns of marine nonâ€native species in the archipelagos of Macaronesia. Diversity and Distributions, 2022, 28, 667-684.	4.1	23
64	Parsimony dictates a human introduction: on the use of genetic and other data to distinguish between the natural and human-mediated invasion of the European snail Littorina littorea in North America. Biological Invasions, 2008, 10, 131-133.	2.4	22
65	The Panama Canal and the transoceanic dispersal of marine invertebrates: Evaluation of the introduced amphipod Paracaprella pusilla Mayer, 1890 in the Pacific Ocean. Marine Environmental Research, 2014, 99, 204-211.	2.5	21
66	Reply to Clare and HÃ,eg 2008. <i>Balanus amphitrite</i> barnacle nomenclature. Biofouling, 2009, 25, 77-80.	2.2	20
67	Mediators of invasions in the sea: life history strategies and dispersal vectors facilitating global sea anemone introductions. Biological Invasions, 2020, 22, 3195-3222.	2.4	19
68	Premature refutation of a human-mediated marine species introduction: the case history of the marine snail Littorina littorea in the northwestern Atlantic. Biological Invasions, 2007, 9, 737-750.	2.4	18
69	The Global Dispersal of Marine and Estuarine Crustaceans. , 2011, , 3-23.		18
70	Marine invasion processes: interactions between native and introduced marsh snails. Journal of Experimental Marine Biology and Ecology, 1991, 150, 267-281.	1.5	17
71	Biology and Ecology of Long Island Sound. Springer Series on Environmental Management, 2014, , 285-479.	0.3	17
72	Transoceanic dispersal of the mussel Mytilus galloprovincialis on Japanese tsunami marine debris: An approach for evaluating rafting of a coastal species at sea. Marine Pollution Bulletin, 2018, 132, 60-69.	5.0	16

#	Article	IF	Citations
73	Aquatic invasion patterns across the North Atlantic. Global Change Biology, 2022, 28, 1376-1387.	9.5	13
74	First record of the non-native bryozoan Amathia (= Zoobotryon) verticillata (delle Chiaje, 1822) (Ctenostomata) in the Gal $ ilde{A}_i$ pagos Islands. BioInvasions Records, 2015, 4, 255-260.	1.1	12
75	Trait-based characterization of species transported on Japanese tsunami marine debris: Effect of prior invasion history on trait distribution. Marine Pollution Bulletin, 2018, 132, 90-101.	5.0	10
76	Exploring potential establishment of marine rafting species after transoceanic longâ€distance dispersal. Global Ecology and Biogeography, 2019, 28, 588-600.	5.8	10
77	Home and away and home again: discovery of a native reproductive strategy of the globally invading sea anemone Diadumene lineata (Verrill, 1869) in a satellite population. Biological Invasions, 2019, 21, 1491-1497.	2.4	10
78	Disentangling invasions in the sea: molecular analysis of a global polychaete species complex (Annelida: Spionidae: Pseudopolydora paucibranchiata). Biological Invasions, 2020, 22, 3621-3644.	2.4	10
79	Small increases in temperature exacerbate the erosive effects of a non-native burrowing crustacean. Journal of Experimental Marine Biology and Ecology, 2013, 446, 115-121.	1.5	9
80	U.S. action lowers barriers to invasive species. Science, 2020, 367, 636-636.	12.6	9
81	Marine biological diversity: Some important issues, opportunities and critical research needs. Reviews of Geophysics, 1995, 33, 1201-1209.	23.0	6
82	Whales Don't Fall Like Snow: Reply to Jelmert. Conservation Biology, 1996, 10, 655-656.	4.7	6
83	Field stations as sentinels of change. Frontiers in Ecology and the Environment, 2020, 18, 320-322.	4.0	5
84	Global marine biosecurity and ship lay-ups: intensifying effects of trade disruptions. Biological Invasions, 2022, 24, 3441-3446.	2.4	5
85	World Wide Web Buzz about Biodiversity. Conservation Biology, 2003, 17, 1475-1476.	4.7	4
86	Case 3717 â€" xylophagidae Purchon, 1941 (Mollusca: Bivalvia): proposed emendation of the spelling to xylophagaidae to remove homonymy with xylophagidae Fallén, 1810 (Insecta: Diptera). Bulletin of Zoological Nomenclature, 2017, 73, 103-105.	0.1	4
87	Accidental associates are not symbionts: the absence of a non-parasitic endosymbiotic community inside the common periwinkle Littorina littorea (Mollusca: Gastropoda). Marine Biology, 2020, 167, 1.	1.5	4
88	Out of taxonomic crypsis: A new trans-arctic cryptic species pair corroborated by phylogenetics and molecular evidence. Molecular Phylogenetics and Evolution, 2022, 166, 107312.	2.7	4
89	Moving Toward Global Strategies for Managing Invasive Alien Species. , 2022, , 331-360.		4
90	Invasion Science: Looking Forward Rather Than Revisiting Old Ground – A Reply to Zenni et al Trends in Ecology and Evolution, 2017, 32, 809-810.	8.7	3

#	Article	IF	CITATIONS
91	ADRIFT in the North Pacific: The movement, surveillance, and impact of Japanese tsunami debris. Marine Pollution Bulletin, 2018, 132, 1-4.	5.0	2
92	Bugula tsunamiensis n. sp. (Bryozoa, Cheilostomata, Bugulidae) from Japanese tsunami marine debris landed in the Hawaiian Archipelago and the Pacific Coast of the USA. Aquatic Invasions, 2018, 13, 163-171.	1.6	2
93	Biofouling hydroids (Cnidaria: Hydrozoa) from a Tropical Eastern Pacific island, with remarks on their biogeography. Journal of Natural History, 2022, 56, 565-606.	0.5	2
94	Species Invasions: Insights into Ecology, Evolution, and Biogeography. BioScience, 2006, 56, 694.	4.9	1
95	Down the up staircase: Equatorward march of a coldâ€water ascidian and broader implications for invasion ecology. Diversity and Distributions, 2020, 26, 881-896.	4.1	1
96	Keeping up with marine bioinvasions: Building bridges, crossing borders and moving forward at the International Conference on Marine Bioinvasions. Management of Biological Invasions, 2017, 8, 137-140.	1.2	0
97	Obituary: William John Haugen Light (1938–2020) . Zoosymposia, 2020, 19, 27-30.	0.3	O
98	The rediscovery of the only introduced barnacle in Chile: Amphibalanus amphitrite (Darwin, 1854) (Crustacea: Cirripedia) in Estero Tongoy, Northern-Central Chile. BioInvasions Records, 2021, 10, 869-874.	1.1	0