Douglas E Wright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4190683/publications.pdf Version: 2024-02-01

DOLICIAS F WRIGHT

#	Article	IF	CITATIONS
1	A ketogenic diet reduces mechanical allodynia and improves epidermal innervation in diabetic mice. Pain, 2022, 163, 682-689.	4.2	8
2	A ketogenic diet prevents methylglyoxal-evoked nociception by scavenging methylglyoxal. Pain, 2022, Publish Ahead of Print, .	4.2	4
3	The impact of foot shock-induced stress on pain-related behavior associated with burn injury. Burns, 2021, 47, 1896-1907.	1.9	2
4	Voluntary wheel running improves outcomes in an early life stress–induced model of urologic chronic pelvic pain syndrome in male mice. Pain, 2021, 162, 1681-1691.	4.2	10
5	Foot shock stress generates persistent widespread hypersensitivity and anhedonic behavior in an anxiety-prone strain of mice. Pain, 2020, 161, 211-219.	4.2	12
6	Diabetic neuropathy. Nature Reviews Disease Primers, 2019, 5, 41.	30.5	692
7	Deletion of the insulin receptor in sensory neurons increases pancreatic insulin levels. Experimental Neurology, 2018, 305, 97-107.	4.1	13
8	Intrinsic Activity of C57BL/6 Substrains Associates with High-Fat Diet-Induced Mechanical Sensitivity in Mice. Journal of Pain, 2018, 19, 1285-1295.	1.4	17
9	A ketogenic diet reduces metabolic syndrome-induced allodynia and promotes peripheral nerve growth in mice. Experimental Neurology, 2018, 306, 149-157.	4.1	46
10	Reduced mitochondrial reactive oxygen species production in peripheral nerves of mice fed a ketogenic diet. Experimental Physiology, 2018, 103, 1206-1212.	2.0	23
11	Modulation of dietâ€induced mechanical allodynia by metabolic parameters and inflammation. Journal of the Peripheral Nervous System, 2017, 22, 39-46.	3.1	24
12	Less is More in Diabetic Neuropathy Diagnosis: Comparison of Quantitative Sudomotor Axon Reflex and Skin Biopsy. Journal of Clinical Neuromuscular Disease, 2017, 19, 5-11.	0.7	4
13	Rats bred for low and high running capacity display alterations in peripheral tissues and nerves relevant to neuropathy and pain. Brain and Behavior, 2017, 7, e00780.	2.2	7
14	Increased FNDC5 is associated with insulin resistance in high fat-fed mice. Physiological Reports, 2017, 5, e13319.	1.7	28
15	204 Voluntary Exercise Modulates Macrophage Polarization Following Sciatic Nerve Injury and Improves Functional Recovery in Mice. Neurosurgery, 2017, 64, 255.	1.1	1
16	Emerging Relationships between Exercise, Sensory Nerves, and Neuropathic Pain. Frontiers in Neuroscience, 2016, 10, 372.	2.8	74
17	A Role for Insulin in Diabetic Neuropathy. Frontiers in Neuroscience, 2016, 10, 581.	2.8	60
18	The Effects Of A High-fat Diet And Exercise On The Pgc-1α-fndc5/irisin Pathway In C57bl/6 Mice. Medicine and Science in Sports and Exercise, 2016, 48, 545.	0.4	0

DOUGLAS E WRIGHT

#	Article	IF	CITATIONS
19	Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy. Neuroscience, 2015, 285, 312-323.	2.3	31
20	Safety of Aerobic Exercise in People With Diabetic Peripheral Neuropathy: Single-Group Clinical Trial. Physical Therapy, 2015, 95, 223-234.	2.4	56
21	Experimental motor neuropathy in diabetes. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 126, 461-467.	1.8	8
22	<i>In vivo</i> peripheral nervous system insulin signaling. Journal of the Peripheral Nervous System, 2013, 18, 209-219.	3.1	17
23	Peripheral nervous system insulin resistance in ob/ob mice. Acta Neuropathologica Communications, 2013, 1, 15.	5.2	57
24	Chewing the fat: Genetic approaches to model dyslipidemia-induced diabetic neuropathy in mice. Experimental Neurology, 2013, 248, 504-508.	4.1	5
25	Streptozotocinâ€Induced Diabetes Partially Attenuates the Effects of a Highâ€Fat Diet on Liver and Brain Fatty Acid Composition in Mice. Lipids, 2013, 48, 939-948.	1.7	12
26	Exercise-mediated improvements in painful neuropathy associated with prediabetes in mice. Pain, 2013, 154, 2658-2667.	4.2	82
27	Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Translational Research, 2012, 159, 355-365.	5.0	109
28	The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. Journal of Diabetes and Its Complications, 2012, 26, 424-429.	2.3	266
29	Inflammatory Mediators in Diabetic Neuropathy. Journal of Diabetes & Metabolism, 2012, 01, .	0.2	9
30	Impaired sensory nerve function and axon morphology in mice with diabetic neuropathy. Journal of Neurophysiology, 2011, 106, 905-914.	1.8	50
31	Characterisation of glyoxalase I in a streptozocin-induced mouse model of diabetes with painful and insensate neuropathy. Diabetologia, 2011, 54, 2174-2182.	6.3	43
32	Exercise Increases Insulin Content and Basal Secretion in Pancreatic Islets in Type 1 Diabetic Mice. Experimental Diabetes Research, 2011, 2011, 1-10.	3.8	59
33	Vitamin D Deficiency Promotes Skeletal Muscle Hypersensitivity and Sensory Hyperinnervation. Journal of Neuroscience, 2011, 31, 13728-13738.	3.6	106
34	Aerobic Exercise Alters Analgesia and Neurotrophin-3 Synthesis in an Animal Model of Chronic Widespread Pain. Physical Therapy, 2010, 90, 714-725.	2.4	56
35	Influences Of Experimental Dyslipidemia On Murine Diabetic Neuropathy. Medicine and Science in Sports and Exercise, 2010, 42, 32.	0.4	0
36	Caveolin-1 and Altered Neuregulin Signaling Contribute to the Pathophysiological Progression of Diabetic Peripheral Neuropathy. Diabetes, 2009, 58, 2677-2686.	0.6	47

DOUGLAS E WRIGHT

#	Article	IF	CITATIONS
37	Acidic Saline-Induced Primary and Secondary Mechanical Hyperalgesia in Mice. Journal of Pain, 2009, 10, 1231-1241.	1.4	34
38	Early loss of peptidergic intraepidermal nerve fibers in an STZ-induced mouse model of insensate diabetic neuropathy. Pain, 2008, 140, 35-47.	4.2	59
39	Abnormal Muscle Spindle Innervation and Large-Fiber Neuropathy in Diabetic Mice. Diabetes, 2008, 57, 1693-1701.	0.6	75
40	Perioperative Surveillance for Adverse Myocardial Events. Southern Medical Journal, 2008, 101, 52-58.	0.7	7
41	Prenatal Exposure to Elevated NT3 Disrupts Synaptic Selectivity in the Spinal Cord. Journal of Neuroscience, 2007, 27, 3686-3694.	3.6	27
42	Diabetes-Induced Chemogenic Hypoalgesia Is Paralleled by Attenuated Stimulus-Induced Fos Expression in the Spinal Cord of Diabetic Mice. Journal of Pain, 2007, 8, 637-649.	1.4	20
43	Selective changes in nocifensive behavior despite normal cutaneous axon innervation in leptin receptor–null mutant (<i>db/db</i>) mice. Journal of the Peripheral Nervous System, 2007, 12, 250-261.	3.1	36
44	pro-NGF, sortilin, and p75NTR: Potential mediators of injury-induced apoptosis in the mouse dorsal root ganglion. Brain Research, 2007, 1183, 32-42.	2.2	43
45	Modulation of muscle spindle innervation by neurotrophin-3 following nerve injury. Experimental Neurology, 2005, 191, 211-222.	4.1	20
46	Neurotrophin-3 Reverses Chronic Mechanical Hyperalgesia Induced by Intramuscular Acid Injection. Journal of Neuroscience, 2004, 24, 9405-9413.	3.6	44
47	Diabetes-induced expression of activating transcription factor 3 in mouse primary sensory neurons. Journal of the Peripheral Nervous System, 2004, 9, 242-254.	3.1	33
48	Beneficial actions of neurotrophin treatment on diabetes-induced hypoalgesia in mice. Journal of Pain, 2003, 4, 493-504.	1.4	61
49	Restorative effects of neurotrophin treatment on diabetes-induced cutaneous axon loss in mice. Experimental Neurology, 2003, 179, 188-199.	4.1	122
50	Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survival. Journal of Comparative Neurology, 2001, 432, 155-168.	1.6	23
51	Postnatal regulation of limb proprioception by muscle-derived neurotrophin-3. Journal of Comparative Neurology, 2001, 432, 244-258.	1.6	31